KO
Karen Oegema
Author with expertise in Regulation and Function of Microtubules in Cell Division
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(60% Open Access)
Cited by:
3,826
h-index:
67
/
i10-index:
113
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Functional Analysis of Kinetochore Assembly in Caenorhabditis elegans

Karen Oegema et al.Jun 11, 2001
In all eukaryotes, segregation of mitotic chromosomes requires their interaction with spindle microtubules. To dissect this interaction, we use live and fixed assays in the one-cell stage Caenorhabditis elegans embryo. We compare the consequences of depleting homologues of the centromeric histone CENP-A, the kinetochore structural component CENP-C, and the chromosomal passenger protein INCENP. Depletion of either CeCENP-A or CeCENP-C results in an identical “kinetochore null” phenotype, characterized by complete failure of mitotic chromosome segregation as well as failure to recruit other kinetochore components and to assemble a mechanically stable spindle. The similarity of their depletion phenotypes, combined with a requirement for CeCENP-A to localize CeCENP-C but not vice versa, suggest that a key step in kinetochore assembly is the recruitment of CENP-C by CENP-A–containing chromatin. Parallel analysis of CeINCENP-depleted embryos revealed mitotic chromosome segregation defects different from those observed in the absence of CeCENP-A/C. Defects are observed before and during anaphase, but the chromatin separates into two equivalently sized masses. Mechanically stable spindles assemble that show defects later in anaphase and telophase. Furthermore, kinetochore assembly and the recruitment of CeINCENP to chromosomes are independent. These results suggest distinct roles for the kinetochore and the chromosomal passengers in mitotic chromosome segregation.
0
Citation434
0
Save
0

Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans 

Eva Hannak et al.Dec 17, 2001
Centrosomes mature as cells enter mitosis, accumulating γ-tubulin and other pericentriolar material (PCM) components. This occurs concomitant with an increase in the number of centrosomally organized microtubules (MTs). Here, we use RNA-mediated interference (RNAi) to examine the role of the aurora-A kinase, AIR-1, during centrosome maturation in Caenorhabditis elegans. In air-1(RNAi) embryos, centrosomes separate normally, an event that occurs before maturation in C. elegans. After nuclear envelope breakdown, the separated centrosomes collapse together, and spindle assembly fails. In mitotic air-1(RNAi) embryos, centrosomal α-tubulin fluorescence intensity accumulates to only 40% of wild-type levels, suggesting a defect in the maturation process. Consistent with this hypothesis, we find that AIR-1 is required for the increase in centrosomal γ-tubulin and two other PCM components, ZYG-9 and CeGrip, as embryos enter mitosis. Furthermore, the AIR-1–dependent increase in centrosomal γ-tubulin does not require MTs. These results suggest that aurora-A kinases are required to execute a MT-independent pathway for the recruitment of PCM during centrosome maturation.
0
Citation413
0
Save
0

A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension

Iain Cheeseman et al.Sep 15, 2004
Kinetochores play an essential role in chromosome segregation by forming dynamic connections with spindle microtubules. Here, we identify a set of 10 copurifying kinetochore proteins from Caenorhabditis elegans , seven of which were previously uncharacterized. Using in vivo assays to monitor chromosome segregation, kinetochore assembly, and the mechanical stability of chromosome-microtubule attachments, we show that this copurifying protein network plays a central role at the kinetochore-microtubule interface. In addition, our analysis suggests that the network is comprised of three groups of proteins that contribute in distinct ways to this interface: KNL proteins act after the assembly of centromeric chromatin to generate the core of the microtubule-binding interface, MIS proteins control the rate and extent of formation of this interface, and NDC proteins are necessary to sustain tension during interactions with spindle microtubules. We also purify a similar set of associated proteins from human cells that includes four novel proteins and has recognizable homologs from each functional class. Thus, this protein network is a conserved constituent of the outer kinetochore, and the functions defined by our analysis in C. elegans are likely to be widely relevant.
0
Citation405
0
Save
0

53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration

Franz Meitinger et al.Jul 18, 2016
In normal human cells, centrosome loss induced by centrinone-a specific centrosome duplication inhibitor-leads to irreversible, p53-dependent G1 arrest by an unknown mechanism. A genome-wide CRISPR/Cas9 screen for centrinone resistance identified genes encoding the p53-binding protein 53BP1, the deubiquitinase USP28, and the ubiquitin ligase TRIM37. Deletion of TP53BP1, USP28, or TRIM37 prevented p53 elevation in response to centrosome loss but did not affect cytokinesis failure-induced arrest or p53 elevation after doxorubicin-induced DNA damage. Deletion of TP53BP1 and USP28, but not TRIM37, prevented growth arrest in response to prolonged mitotic duration. TRIM37 knockout cells formed ectopic centrosomal-component foci that suppressed mitotic defects associated with centrosome loss. TP53BP1 and USP28 knockouts exhibited compromised proliferation after centrosome removal, suggesting that centrosome-independent proliferation is not conferred solely by the inability to sense centrosome loss. Thus, analysis of centrinone resistance identified a 53BP1-USP28 module as critical for communicating mitotic challenges to the p53 circuit and TRIM37 as an enforcer of the singularity of centrosome assembly.
0
Citation208
0
Save
0

Polo-like kinase 1 independently controls microtubule-nucleating capacity and size of the centrosome

Masayuki Ohta et al.Oct 7, 2020
SUMMARY Centrosomes are composed of a centriolar core surrounded by a pericentriolar material (PCM) matrix that docks microtubule-nucleating γ-tubulin complexes. During mitotic entry, the PCM matrix increases in size and nucleating capacity in a process called centrosome maturation. Polo-like kinase 1 (PLK1) localizes to centrosomes and phosphorylates PCM matrix proteins to drive their self-assembly, which leads to PCM expansion; this expansion has been assumed to passively increase microtubule nucleation to support spindle assembly. Here, we show that PLK1 directly controls the generation of binding sites for γ-tubulin complexes on the PCM matrix, independently of PCM expansion. Selective inhibition of PLK1-dependent γ-tubulin docking leads to spindle defects and impaired chromosome segregation, without affecting PCM expansion, highlighting the importance of phospho-regulated centrosomal γ-tubulin docking sites in spindle assembly. Inhibiting both γ-tubulin docking and PCM expansion by mutating substrate target sites fully accounts for the actions of PLK-1 in transforming the centrosome during mitotic entry. Summary Statement Polo-like kinase 1-mediated physical expansion of centrosomes during mitotic entry is proposed to passively increase their microtubule nucleating capacity. Ohta et al. show instead that generation of microtubule-nucleating sites is directly controlled by Polo-like kinase 1, independently of centrosome size.
0
Citation5
0
Save
Load More