DL
Davis Laundon
Author with expertise in Global Diversity of Microbial Eukaryotes and Their Evolution
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
15
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
41

Colonial choanoflagellate isolated from Mono Lake harbors a microbiome

Kayley Hake et al.Mar 30, 2021
+7
K
P
K
ABSTRACT Choanoflagellates offer key insights into bacterial influences on the origin and early evolution of animals. Here we report the isolation and characterization of a new colonial choanoflagellate species, Barroeca monosierra, that, unlike previously characterized species, harbors a microbiome. B. monosierra was isolated from Mono Lake, California and forms large spherical colonies that are more than an order of magnitude larger than those formed by the closely related Salpingoeca rosetta . By designing fluorescence in situ hybridization probes from metagenomic sequences, we found that B. monosierra colonies are colonized by members of the halotolerant and closely related Saccharospirillaceae and Oceanospirillaceae, as well as purple sulfur bacteria ( Ectothiorhodospiraceae ) and non-sulfur Rhodobacteraceae. This relatively simple microbiome in a close relative of animals presents a new experimental model for investigating the evolution of stable interactions among eukaryotes and bacteria. IMPORTANCE The animals and bacteria of Mono Lake (California) have evolved diverse strategies for surviving the hypersaline, alkaline, arsenic-rich environment. We sought to investigate whether the closest living relatives of animals, the choanoflagellates, exist among the relatively limited diversity of organisms in Mono Lake. We repeatedly isolated members of a single species of choanoflagellate, which we have named Barroeca monosierra, suggesting that it is a stable and abundant part of the ecosystem. Characterization of B. monosierra revealed that it forms large spherical colonies that each contain a microbiome, providing an opportunity to investigate the evolution of stable physical associations between eukaryotes and bacteria.
41
Citation8
0
Save
40

Choanoflagellates and the ancestry of neurosecretory vesicles

Ronja Göhde et al.May 27, 2020
+6
D
B
R
Summary Neurosecretory vesicles are highly specialized trafficking organelles important for metazoan cell-cell signalling. Despite the high anatomical and functional diversity of neurons in metazoans, the protein composition of neurosecretory vesicles in bilaterians appears to be similar. This similarity points towards a common evolutionary origin. Moreover, many key neurosecretory vesicle proteins predate the origin of the first neurons and some even the origin of the first animals (metazoans). However, little is known about the molecular toolkit of these vesicles in non-bilaterian metazoans and their closest unicellular relatives, making inferences about the evolutionary origin of neurosecretory vesicles extremely difficult. By comparing 28 proteins of the core neurosecretory vesicle proteome in 13 different species, we demonstrate that most of the proteins are already present in unicellular organisms. Surprisingly, we find that the vesicle residing SNARE protein synaptobrevin is localized to the vesicle-rich apical and basal pole in the choanoflagellate Salpingoeca rosetta . Our 3D vesicle reconstructions reveal that the choanoflagellates Salpingoeca rosetta and Monosiga brevicollis exhibit a polarized and diverse vesicular landscape. This study sheds light on the ancestral molecular machinery of neurosecretory vesicles and provides a framework to understand the origin and evolution of secretory cells, synapses, and neurons.
40
Citation5
0
Save
51

A cellular and molecular atlas reveals the basis of chytrid development

Davis Laundon et al.Sep 6, 2021
+3
K
N
D
ABSTRACT The chytrids (phylum Chytridiomycota) are a major early-diverging fungal lineage of ecological and evolutionary importance. Despite their importance, many fundamental aspects of chytrid developmental and cell biology remain poorly understood. To address these knowledge gaps, we combined quantitative volume electron microscopy and comparative transcriptome profiling to create an ‘atlas’ of the cellular and molecular basis of the chytrid life cycle, using the model chytrid Rhizoclosmatium globosum . From our developmental atlas, we show that zoospores exhibit a specialised biological repertoire dominated by inactive ribosome aggregates, and that lipid processing is complex and dynamic throughout the cell cycle. We demonstrate that the chytrid apophysis is a distinct subcellular structure characterised by high intracellular trafficking, providing evidence for division of labour in the chytrid cell plan, and show that zoosporogenesis includes ‘animal like’ amoeboid cell morphologies resulting from endocytotic cargo transport from the interstitial maternal cytoplasm. Taken together, our results reveal insights into chytrid developmental biology and provide a basis for future investigations into early-diverging fungal cell biology.
51
Citation1
0
Save
0

Quantitative microCT imaging of a whole equine placenta and its blood vessel network

Davis Laundon et al.Jul 31, 2024
+6
P
E
D
Placental structure is linked to function across morphological scales. In the placenta, changes to gross anatomy, such as surface area, volume, or blood vessel arrangement, are associated with suboptimal physiological outcomes. However, quantifying each of these metrics requires different laborious semi-quantitative methods. Here, we demonstrate how, with minimal sample preparation, whole-organ computed microtomography (microCT) can be used to calculate gross morphometry of the equine placenta and a range of additional metrics, including branching morphometry of placental vasculature, non-destructively from a single dataset. Our approach can be applied to quantify the gross structure of any large mammalian placenta.
0
Citation1
0
Save
0

Chytrid rhizoid morphogenesis is adaptive and resembles hyphal development in ‘higher’ fungi

Davis Laundon et al.Aug 14, 2019
M
G
N
D
Fungi are major components of the Earth’s biosphere [[1][1]], sustaining many critical ecosystem processes [[2][2], [3][3]]. Key to fungal prominence is their characteristic cell biology, our understanding of which has been principally based on ‘higher’ dikaryan hyphal and yeast forms [[4][4]–[6][5]]. The early-diverging Chytridiomycota (chytrids) are ecologically important [[2][2], [7][6], [8][7]] and a significant component of fungal diversity [[9][8]–[11][9]], yet their cell biology remains poorly understood. Unlike dikaryan hyphae, chytrids typically attach to substrates and feed osmotrophically via anucleate rhizoids [[12][10]]. The evolution of fungal hyphae appears to have occurred from lineages exhibiting rhizoidal growth [[13][11]] and it has been hypothesised that a rhizoid-like structure was the precursor to multicellular hyphae and mycelial feeding in fungi [[14][12]]. Here we show in a unicellular chytrid, Rhizoclosmatium globosum , that rhizoid development has equivalent features to dikaryan hyphae and is adaptive to resource availability. Rhizoid morphogenesis exhibits analogous properties with growth in hyphal forms, including tip production, branching and decreasing fractal geometry towards the growing edge, and is controlled by β-glucan-dependent cell wall synthesis and actin polymerisation. Chytrid rhizoids from individual cells also demonstrate adaptive morphological plasticity in response to substrate availability, developing a searching phenotype when carbon starved and exhibiting spatial differentiation when interacting with particulate substrates. Our results show striking similarities between unicellular early-diverging and dikaryan fungi, providing insights into chytrid cell biology, ecological prevalence and fungal evolution. We demonstrate that the sophisticated cell biology and developmental plasticity previously considered characteristic of hyphal fungi are shared more widely across the Kingdom Fungi and therefore could be conserved from their most recent common ancestor. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-6 [6]: #ref-7 [7]: #ref-8 [8]: #ref-9 [9]: #ref-11 [10]: #ref-12 [11]: #ref-13 [12]: #ref-14
0

The architecture of cell differentiation in choanoflagellates and sponge choanocytes

Davis Laundon et al.Oct 29, 2018
+2
K
B
D
Collar cells are ancient animal cell types which are conserved across the animal kingdom and their closest relatives, the choanoflagellates. However, little is known about their ancestry, their subcellular architecture, or how they differentiate. The choanoflagellate Salpingoeca rosetta expresses genes necessary for animal multicellularity and development and can alternate between unicellular and multicellular states making it a powerful model to investigate the origin of animal multicellularity and mechanisms underlying cell differentiation. To compare the subcellular architecture of solitary collar cells in S. rosetta with that of multicellular 'rosettes' and collar cells in sponges, we reconstructed entire cells in 3D through transmission electron microscopy on serial ultrathin sections. Structural analysis of our 3D reconstructions revealed important differences between single and colonial choanoflagellate cells, with colonial cells exhibiting a more amoeboid morphology consistent with relatively high levels of macropinocytotic activity. Comparison of multiple reconstructed rosette colonies highlighted the variable nature of cell sizes, cell-cell contact networks and colony arrangement. Importantly, we uncovered the presence of elongated cells in some rosette colonies that likely represent a distinct and differentiated cell type. Intercellular bridges within choanoflagellate colonies displayed a variety of morphologies and connected some, but not all, neighbouring cells. Reconstruction of sponge choanocytes revealed both ultrastructural commonalities and differences in comparison to choanoflagellates. Choanocytes and colonial choanoflagellates are typified by high amoeboid cell activity. In both, the number of microvilli and volumetric proportion of the Golgi apparatus are comparable, whereas choanocytes devote less of their cell volume to the nucleus and mitochondria than choanoflagellates and more of their volume to food vacuoles. Together, our comparative reconstructions uncover the architecture of cell differentiation in choanoflagellates and sponge choanocytes and constitute an important step in reconstructing the cell biology of the last common ancestor of the animal kingdom.
0

Evolutionary and biological mechanisms underpinning chitin degradation in aquatic fungi

Nathan Chrismas et al.Feb 12, 2024
+3
D
K
N
Abstract Fungal biology underpins major processes in ecosystems. The Chytridiomycota (chytrids) is a group of early-diverging fungi, many of which function in ecosystems as saprotrophs processing high molecular weight biopolymers, however the mechanisms underpinning chytrid saprotrophy are poorly understood. Genome sequences from representatives across the group and the use of model chytrids offers the potential to determine new insights into their evolution. In this study, we focused on the biology underpinning chitin saprotrophy, a common ecosystem function of aquatic chytrids. The genomes of chitinophilic chytrids have expanded inventories of glycoside hydrolase genes responsible for chitin processing, complemented with bacteria-like chitin-binding modules (CBMs) that are absent in other chytrids. In the model chitinophilic saprotroph Rhizoclosmatium globosum JEL800, the expanded repertoire of chitinase genes is diverse and almost half were detected as proteins in the secretome when grown with chitin. Predicted models of the secreted chitinases indicate a range of active site sizes and domain configurations. We propose that increased diversity of secreted chitinases is an adaptive strategy that facilitates chitin degradation in the complex heterologous organic matrix of the arthropod exoskeleton. Free swimming R. globosum JEL800 zoospores are chemotactic to the chitin monomer N-acetylglucosamine and accelerate zoospore development when grown with chitin. Our study sheds light on the underpinning biology and evolutionary mechanisms that have supported the saprotrophic niche expansion of some chytrids to utilise lucrative chitin-rich particles in aquatic ecosystems and is a demonstration of the adaptive capability of this successful fungal group.