DA
Dawn Autio
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
2
h-index:
7
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Short-term facilitation of long-range corticocortical synapses revealed by selective optical stimulation

Luis Martinetti et al.Jun 25, 2021
+2
D
K
L
ABSTRACT Short-term plasticity regulates the strength of central synapses as a function of previous activity. In the neocortex, direct synaptic interactions between areas play a central role in cognitive function, but the activity-dependent regulation of these long-range corticocortical connections and their impact on a postsynaptic target neuron is unclear. Here, we use an optogenetic strategy to study the connections between mouse primary somatosensory and motor cortex. We found that short-term facilitation was strong in both corticocortical synapses, resulting in far more sustained responses than local intra-cortical and thalamocortical connections. A major difference between pathways was that the synaptic strength and magnitude of facilitation were distinct for individual excitatory cells located across all cortical layers and specific subtypes of GABAergic neurons. Facilitation was dependent on the presynaptic calcium sensor synaptotagmin-7 and altered by several optogenetic approaches. Current-clamp recordings revealed that during repetitive activation, the short-term dynamics of corticocortical synapses enhanced the excitability of layer 2/3 pyramidal neurons, increasing the probability of spiking with activity. Furthermore, the properties of the connections linking primary with secondary somatosensory cortex resemble those between somatosensory-motor areas. These short-term changes in transmission properties suggest long-range corticocortical synapses are specialized for conveying information over relatively extended periods.
1
Citation2
0
Save
0

Functional dynamics and selectivity of two parallel corticocortical pathways from motor cortex to layer 5 circuits in somatosensory cortex

Hye-Hyun Kim et al.Jun 1, 2024
+3
G
K
H
In the rodent whisker system, active sensing and sensorimotor integration are mediated in part by the dynamic interactions between the motor cortex (M1) and somatosensory cortex (S1). However, understanding these dynamic interactions requires knowledge about the synapses and how specific neurons respond to their input. Here, we combined optogenetics, retrograde labeling, and electrophysiology to characterize the synaptic connections between M1 and layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons in S1 of mice (both sexes). We found that M1 synapses onto IT cells displayed modest short-term depression, whereas synapses onto PT neurons showed robust short-term facilitation. Despite M1 inputs to IT cells depressing, their slower kinetics resulted in summation and a response that increased during short trains. In contrast, summation was minimal in PT neurons due to the fast time course of their M1 responses. The functional consequences of this reduced summation, however, were outweighed by the strong facilitation at these M1 synapses, resulting in larger response amplitudes in PT neurons than IT cells during repetitive stimulation. To understand the impact of facilitating M1 inputs on PT output, we paired trains of inputs with single backpropagating action potentials, finding that repetitive M1 activation increased the probability of bursts in PT cells without impacting the time dependence of this coupling. Thus, there are two parallel but dynamically distinct systems of M1 synaptic excitation in L5 of S1, each defined by the short-term dynamics of its synapses, the class of postsynaptic neurons, and how the neurons respond to those inputs.
0

Functional dynamics and selectivity of two parallel corticocortical pathways from motor cortex to layer 5 circuits in somatosensory cortex

Hye-Hyun Kim et al.Feb 12, 2024
+3
G
K
H
ABSTRACT Long-range corticocortical pathways mediate direct interactions between the primary motor cortex (M1) and the somatosensory cortex (S1) and are likely critical for context-dependent sensory processing and sensorimotor integration. In the rodent whisker system, projections from M1 to S1 may be necessary for interpreting touch signals in the context of ongoing movement to drive behavior. However, understanding the function of these interareal interactions requires knowledge about the physiological properties of the synapses themselves and how specific classes of neurons integrate those signals. Here, we combined optogenetics and retrograde labeling with in vitro electrophysiology to characterize the synaptic properties of the connections between M1 and layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons in S1 of the mouse (both sexes) and how these two classes of neurons integrate those inputs. We found that M1 excitatory inputs to L5 IT cells depressed but had slow time courses that resulted in summation at the soma, whereas inputs to L5 PT cells facilitated and had faster time courses, resulting in less temporal summation at the soma. Differences in hyperpolarization-activated current (Ih) could partially explain the differences in subthreshold synaptic responses between L5 neurons. Functionally, we found that high-frequency M1 activity coupled more effectively with backpropagating action potentials within a narrow time window in PT neurons to trigger bursts at the soma. Our findings highlight the synaptic and cellular dynamics of two parallel pathways underlying the interactions between M1 and specific L5 circuits in S1.
0

Motor Control of Distinct Layer 6 Corticothalamic Feedback Circuits

Luis Martinetti et al.Apr 23, 2024
S
D
L
Layer 6 corticothalamic (L6 CT) neurons provide massive input to the thalamus, and these feedback connections enable the cortex to influence its own sensory input by modulating thalamic excitability. However, the functional role(s) feedback serves during sensory processing is unclear. One hypothesis is that CT feedback is under the control of extra-sensory signals originating from higher-order cortical areas, yet we know nothing about the mechanisms of such control. It is also unclear whether such regulation is specific to CT neurons with distinct thalamic connectivity. Using mice (either sex) combined with in vitro electrophysiology techniques, optogenetics, and retrograde labeling, we describe studies of vibrissal primary motor cortex (vM1) influences on different CT neurons in the vibrissal primary somatosensory cortex (vS1) with distinct intrathalamic axonal projections. We found that vM1 inputs are highly selective, evoking stronger postsynaptic responses in Dual ventral posterior medial nucleus (VPm) and posterior medial nucleus (POm) projecting CT neurons located in lower L6a than VPm-only projecting CT cells in upper L6a. A targeted analysis of the specific cells and synapses involved revealed that the greater responsiveness of Dual CT neurons was due to their distinctive intrinsic membrane properties and synaptic mechanisms. These data demonstrate that vS1 has at least two discrete L6 CT subcircuits distinguished by their thalamic projection patterns, intrinsic physiology, and functional connectivity with vM1. Our results also provide insights into how a distinct CT subcircuit may serve specialized roles specific to contextual modulation of tactile-related sensory signals in the somatosensory thalamus during active vibrissa movements.
3

State-dependent modulation of activity in distinct layer 6 corticothalamic neurons in barrel cortex of awake mice

Suryadeep Dash et al.Nov 10, 2021
S
D
S
ABSTRACT Layer 6 corticothalamic (L6 CT) neurons are in a strategic position to control sensory input to the neocortex, yet we understand very little about their functions. Apart from studying their anatomical, physiological and synaptic properties, most recent efforts have focused on the activity-dependent influences CT cells can exert on thalamic and cortical neurons through causal optogenetic manipulations. However, few studies have attempted to study them during behavior. To address this gap, we performed juxtacellular recordings from optogenetically identified CT neurons in whisker-related primary somatosensory cortex (wS1) of awake, head-fixed mice (either sex) free to rest quietly or self-initiate bouts of whisking and locomotion. We found a rich diversity of response profiles exhibited by CT cells. Their spiking patterns were either modulated by whisking-related behavior (∼28%) or not (∼72%). Whisking-responsive neurons exhibited either increases, activated-type, or decreases in firing rates, suppressed-type, that aligned with whisking onset better than locomotion. We also encountered responsive neurons with preceding modulations in firing rate before whisking onset. Overall, whisking better explained these changes in rates than overall changes in arousal. Whisking-unresponsive CT cells were generally quiet, with many having low spontaneous firing rates, sparse-type, and others being completely silent. Remarkably, the sparse firing CT population preferentially spiked at the state transition point when pupil diameter constricted and the mouse entered quiet wakefulness. Thus, our results demonstrate that L6 CT cells in wS1 show diverse spiking patterns, perhaps subserving distinct functional roles related to precisely timed responses during complex behaviors and transitions between discrete waking states. SIGNIFICANCE STATEMENT Layer 6 corticothalamic neurons provide a massive input to the sensory thalamus and local connectivity within cortex, but their role in thalamocortical processing remains unclear due to difficulty accessing and isolating their activity. Although several recent optogenetic studies reveal that the net influence of corticothalamic actions, suppression versus enhancement, depends critically on the rate these neurons fire, the factors that influence their spiking are poorly understood, particularly during wakefulness. Using the well-established Ntsr1-Cre line to target this elusive population in the whisker somatosensory cortex of awake mice, we found that corticothalamic neurons show diverse state-related responses and modulations in firing rate. These results suggest separate corticothalamic populations can differentially influence thalamocortical excitability during rapid state transitions in awake, behaving animals.