LZ
Laure Zago
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(67% Open Access)
Cited by:
2,651
h-index:
37
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cortical networks for working memory and executive functions sustain the conscious resting state in man

Bernard Mazoyer et al.Feb 1, 2001
The cortical anatomy of the conscious resting state (REST) was investigated using a meta-analysis of nine positron emission tomography (PET) activation protocols that dealt with different cognitive tasks but shared REST as a common control state. During REST, subjects were in darkness and silence, and were instructed to relax, refrain from moving, and avoid systematic thoughts. Each protocol contrasted REST to a different cognitive task consisting either of language, mental imagery, mental calculation, reasoning, finger movement, or spatial working memory, using either auditory, visual or no stimulus delivery, and requiring either vocal, motor or no output. A total of 63 subjects and 370 spatially normalized PET scans were entered in the meta-analysis. Conjunction analysis revealed a network of brain areas jointly activated during conscious REST as compared to the nine cognitive tasks, including the bilateral angular gyrus, the left anterior precuneus and posterior cingulate cortex, the left medial frontal and anterior cingulate cortex, the left superior and medial frontal sulcus, and the left inferior frontal cortex. These results suggest that brain activity during conscious REST is sustained by a large scale network of heteromodal associative parietal and frontal cortical areas, that can be further hierarchically organized in an episodic working memory parieto-frontal network, driven in part by emotions, working under the supervision of an executive left prefrontal network.
0

What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing?

Mathieu Vigneau et al.Jul 24, 2010
To evaluate the relative role of left and right hemispheres (RH) and describe the functional anatomy of RH during ortholinguistic tasks, we re-analyzed the 128 papers of a former left-hemisphere (LH) meta-analysis (Vigneau et al., 2006). Of these, 59 articles reported RH participation, providing 105 RH language contrasts including 218 peaks compared to 728 on the left, a proportion reflecting the LH language dominance. To describe inter-hemispheric interactions, in each of the language contrasts involving both hemispheres, we distinguished between unilateral and bilateral peaks, i.e. having homotopic activation in the LH in the same contrast. We also calculated the proportion of bilateral peaks in the LH. While the majority of LH peaks were unilateral (79%), a reversed pattern was observed in the RH; this demonstrates that, in contrast to the LH, the RH works in an inter-hemispheric manner. To analyze the regional pattern of RH participation, these unilateral and bilateral peaks were spatially clustered for each language component. Most RH phonological clusters corresponded to bilateral recruitment of auditory and motor cortices. Notably, the motor representation of the mouth and phonological working memory areas were exclusively left-lateralized, supporting the idea that the RH does not host phonological representations. Right frontal participation was not specific for the language component involved and appeared related to the recruitment of attentional and working memory areas. The fact that RH participation during lexico-semantic tasks was limited to these executive activations is compatible with the hypothesis that active inhibition is exerted from the LH during the processing of meaning. Only during sentence/text processing tasks a specific unilateral RH-temporal involvement was noted, likely related to context processing. These results are consistent with split-brain studies that found that the RH has a limited lexicon, with no phonological abilities but active involvement in the processing of context.
0
Citation425
0
Save
0

Neural Correlates of Simple and Complex Mental Calculation

Laure Zago et al.Feb 1, 2001
Some authors proposed that exact mental calculation is based on linguistic representations and relies on the perisylvian language cortices, while the understanding of proximity relations between numerical quantities implicates the parietal cortex. However, other authors opposed developmental arguments to suggest that number sense emerges from nonspecific visuospatial processing areas in the parietal cortex. Within this debate, the present study aimed at revealing the functional anatomy of the two basic resolution strategies involved in mental calculation, namely arithmetical fact retrieval and actual computation, questioning in particular the respective role of language and/or visuospatial cerebral areas. Regional cerebral blood flow was measured with positron emission tomography while subjects were at rest (Rest), read digits (Read), retrieved simple arithmetic facts from memory (i.e., 2 × 4, Retrieve), and performed mental complex calculation (i.e., 32 × 24, Compute). Compared to Read, Retrieve engaged a left parieto-premotor circuit representing a developmental trace of a finger-counting representation that mediates, by extension, the numerical knowledge in adult. Beside this basic network, Retrieve involved a naming network, including the left anterior insula and the right cerebellar cortex, while it did not engage the perisylvian language areas, which were deactivated as compared to Rest. In addition to this retrieval network, Compute specifically involved two functional networks: a left parieto-frontal network in charge of the holding of the multidigit numbers in visuospatial working memory and a bilateral inferior temporal gyri related to the visual mental imagery resolution strategy. Overall, these results provide strong evidence of the involvement of visuospatialrepresentations in different levels of mental calculation.
0
Citation397
0
Save
0

Gaussian Mixture Modeling of Hemispheric Lateralization for Language in a Large Sample of Healthy Individuals Balanced for Handedness

Bernard Mazoyer et al.Jun 30, 2014
Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH). A hemispheric functional lateralization index (HFLI) for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH) and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely "Typical" (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH), "Ambilateral" (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH) and "Strongly-atypical" (right-hemisphere dominance with clear negative HFLI values, 7% of LH). Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population) who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance.
0
Citation323
0
Save
0

Brain activity at rest: a multiscale hierarchical functional organization

Gaëlle Doucet et al.Mar 24, 2011
Spontaneous brain activity was mapped with functional MRI (fMRI) in a sample of 180 subjects while in a conscious resting-state condition. With the use of independent component analysis (ICA) of each individual fMRI signal and classification of the ICA-defined components across subjects, a set of 23 resting-state networks (RNs) was identified. Functional connectivity between each pair of RNs was assessed using temporal correlation analyses in the 0.01- to 0.1-Hz frequency band, and the corresponding set of correlation coefficients was used to obtain a hierarchical clustering of the 23 RNs. At the highest hierarchical level, we found two anticorrelated systems in charge of intrinsic and extrinsic processing, respectively. At a lower level, the intrinsic system appears to be partitioned in three modules that subserve generation of spontaneous thoughts (M1a; default mode), inner maintenance and manipulation of information (M1b), and cognitive control and switching activity (M1c), respectively. The extrinsic system was found to be made of two distinct modules: one including primary somatosensory and auditory areas and the dorsal attentional network (M2a) and the other encompassing the visual areas (M2b). Functional connectivity analyses revealed that M1b played a central role in the functioning of the intrinsic system, whereas M1c seems to mediate exchange of information between the intrinsic and extrinsic systems.
0

AICHA: An atlas of intrinsic connectivity of homotopic areas

Marc Joliot et al.Jul 23, 2015
Atlases of brain anatomical ROIs are widely used for functional MRI data analysis. Recently, it was proposed that an atlas of ROIs derived from a functional brain parcellation could be advantageous, in particular for understanding how different regions share information. However, functional atlases so far proposed do not account for a crucial aspect of cerebral organization, namely homotopy, i.e. that each region in one hemisphere has a homologue in the other hemisphere.We present AICHA (for Atlas of Intrinsic Connectivity of Homotopic Areas), a functional brain ROIs atlas based on resting-state fMRI data acquired in 281 individuals. AICHA ROIs cover the whole cerebrum, each having 1-homogeneity of its constituting voxels intrinsic activity, and 2-a unique homotopic contralateral counterpart with which it has maximal intrinsic connectivity. AICHA was built in 4 steps: (1) estimation of resting-state networks (RSNs) using individual resting-state fMRI independent components, (2) k-means clustering of voxel-wise group level profiles of connectivity, (3) homotopic regional grouping based on maximal inter-hemispheric functional correlation, and (4) ROI labeling.AICHA includes 192 homotopic region pairs (122 gyral, 50 sulcal, and 20 gray nuclei). As an application, we report inter-hemispheric (homotopic and heterotopic) and intra-hemispheric connectivity patterns at different sparsities.ROI functional homogeneity was higher for AICHA than for anatomical ROI atlases, but slightly lower than for another functional ROI atlas not accounting for homotopy.AICHA is ideally suited for intrinsic/effective connectivity analyses, as well as for investigating brain hemispheric specialization.
11

The MRi-Share database: brain imaging in a cross-sectional cohort of 1,870 university students

Ami Tsuchida et al.Jun 18, 2020
Abstract We report on MRi-Share, a multi-modal brain MRI database acquired in a unique sample of 1,870 young healthy adults, aged 18 to 35 years, while undergoing university-level education. MRi-Share contains structural (T1 and FLAIR), diffusion (multispectral), susceptibility weighted (SWI), and resting-state functional imaging modalities. Here, we described the contents of these different neuroimaging datasets and the processing pipelines used to derive brain phenotypes, as well as how quality control was assessed. In addition, we present preliminary results on associations of some of these brain image-derived phenotypes at the whole brain level with both age and sex, in the subsample of 1,722 individuals aged less than 26 years. We demonstrate that the post-adolescence period is characterized by changes in both structural and microstructural brain phenotypes. Grey matter cortical thickness, surface area and volume were found to decrease with age, while white matter volume shows increase. Diffusivity, either radial or axial, was found to robustly decrease with age whereas fractional anisotropy only slightly increased. As for the neurite orientation dispersion and densities, both were found to increase with age. The isotropic volume fraction also showed a slight increase with age. These preliminary findings emphasize the complexity of changes in brain structure and function occurring in this critical period at the interface of late maturation and early aging.
0

A population-based atlas of the human pyramidal tract in 410 healthy participants

Quentin Chenot et al.Jan 22, 2018
Abstract With the advances in diffusion MRI and tractography, numerous atlases of the human pyramidal tract (PyT) have been proposed but the inherent limitation of tractography to resolve crossing bundles within the centrum semiovale have so far prevented the complete description of the most lateral PyT projections. Here, we combined a precise manual positioning of individual subcortical regions of interest along the descending pathway of the PyT with a new bundle-specific tractography algorithm. This later is based on anatomical priors to improve streamlines tracking in crossing areas. We then extracted both left and right PyT in a large cohort of 410 healthy participants and built a population-based atlas of the whole-fanning PyT with a complete description of its most cortico-lateral projections. Clinical applications are envisaged, the whole-fanning PyT atlas being likely a better marker of corticospinal integrity metrics than those currently used within the frame of prediction of post-stroke motor recovery. The present population-based PyT, freely available, provides an interesting tool for clinical applications in order to locate specific PyT damage and its impact to the short and long-term motor recovery after stroke.
8

Neural support of manual preference revealed by BOLD variations during right and left finger-tapping in a sample of 287 healthy adults balanced for handedness

Nathalie Tzourio‐Mazoyer et al.Sep 16, 2020
A bstract We have identified the brain areas involved in Manual Preference (MP) in 143 left-handers (LH) and 144 right-handers (RH)). First, we selected the pairs of homotopic regions of interest (hROIs) of the AICHA atlas with significant contralateral activation and asymmetry during the right-hand and the left-hand Finger-Tapping (FT) both in RH and LH. Thirteen hROIs were selected, including the primary and secondary sensorimotor, and premotor cortices, thalamus, dorsal putamen and cerebellar lobule IV. Both contralateral activations and ipsilateral deactivations (reversed for the cerebellum) were seen in primary motor and somatosensory areas, with stronger asymmetries when the preferred hand was used. Comparing the prediction of MP with different combinations of BOLD variations in these 13 hROIs, the differences between movement of the preferred hand versus that of the non-preferred hand within the contralateral and/or ipsilateral cortices of 11 hROIS performed best at explaining handedness distribution, Handedness is thus supported by: 1-between-hand variations of ipsilateral deactivations of hand primary sensorimotor and secondary somatosensory cortices and 2-variations in regions showing the same profile in left and right-handers during the right or left FT. The present study demonstrates that right and left-handedness are not based on mirrored organization of hand control areas.
0

A Sentence Supramodal Areas Atlas (Sensaas) Based on Multiple Task-Induced Activation Mapping and Graph Analysis of Intrinsic Connectivity in 144 Healthy Right-Handers

Loïc Labache et al.Feb 28, 2018
Abstract We herein propose an atlas of 32 sentence-related areas based on a 3-step method combining the analysis of activation and asymmetry during multiple language tasks with hierarchical clustering of resting-state connectivity and graph analyses. 144 healthy right-handers performed fMRI runs based on language production, reading and listening, both with sentences and lists of over-learned words. Sentence minus word-list BOLD contrast and left-minus-right BOLD asymmetry for each task were computed in pairs of homotopic regions of interest (hROIs) from the AICHA atlas. Thirty-two hROIs were identified that were conjointly activated and leftward asymmetrical in each of the 3 language contrasts. Analysis of resting- state temporal correlations of BOLD variations between these 32 hROIs allowed the segregation of a core network, SENT_CORE including 18 hROIs. Resting-state graph analysis applied to SENT_CORE hROIs revealed that the pars triangularis of the inferior frontal gyrus and the superior temporal sulcus were hubs based on their degree centrality, betweenness, and participation values, corresponding to epicentres of sentence processing. Positive correlations between DC and BOLD activation values for SENT_CORE hROIs were observed across individuals and across regions regardless of the task: the more a SENT_CORE area is connected at rest the stronger it is activated during sentence processing. DC measurements in SENT_CORE may thus be a valuable index for the evaluation of inter-individual variations in language areas functional activity in relation to anatomical or clinical patterns in large populations. SENSAAS (SENtence Supramodal Areas AtlaS), comprising the 32 supramodal sentence areas, including SENT-CORE network, can be downloaded at http://www.gin.cnrs.fr/en/tools/ .
Load More