PD
Pooran Dewari
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
5
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The N-terminus of Stag1 is required to repress the 2C program by maintaining rRNA expression and nucleolar integrity

Dubravka Pezić et al.Feb 16, 2021
ABSTRACT Several studies have shown a role for Stag proteins in cell identity. Our understanding of how Stag proteins contribute to cell identity have largely been focused on its roles in chromosome topology as part of the cohesin complex and the impact on protein-coding gene expression. Furthermore, several Stag paralogs exist in mammalian cells with non-reciprocal chromosome structure and cohesion functions. Why cells have so many Stag proteins and what specific functions each Stag protein performs to support a given cell state are poorly understood. Here we reveal that Stag1 is the dominant paralog in mouse embryonic stem cells (mESC) and is required for pluripotency. Through the discovery of diverse, naturally occurring Stag1 isoforms in mESCs, we shed new light not only on the unique ends of Stag1 but also the critical role that their levels play in stem cell identity. Furthermore, we revel a new role for Stag1, and specifically its unique N-terminal end, in regulating nucleolar integrity and safeguarding mESCs from totipotency. Stag1 is localised to repressive perinucleolar regions, bound at repeats and interacts with Nucleolin and TRIM28. Loss of the Stag1 N-terminus, leads to decreased LINE-1 and rRNA expression and disruption of nucleolar structure and function which consequently leads to activation of the two-cell-like (2C-LC)-specific transcription factor DUX and conversion of pluripotent mESCs to totipotent 2C-LCs. Our results move beyond protein-coding gene regulation via chromatin loops into a new role for Stag1 in repeat regulation and nucleolar structure, and offer fresh perspectives on how Stag proteins contribute to cell identity and disease.
1
Citation3
0
Save
0

An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein

Pooran Dewari et al.Jan 29, 2018
CRISPR/Cas9 can be used for precise genetic knock-in of epitope tags into endogenous genes, simplifying experimental analysis of protein function. However, Cas9-assisted epitope tagging in primary mammalian cell cultures is often inefficient and reliant on plasmid-based selection strategies. Here we demonstrate improved knock-in efficiencies of diverse tags (V5, 3XFLAG, Myc, HA) using co-delivery of Cas9 protein pre-complexed with two-part synthetic modified RNAs (annealed crRNA:tracrRNA) and single-stranded oligodeoxynucleotide (ssODN) repair templates. Knock-in efficiencies of ~5-30%, were achieved without selection in embryonic stem (ES) cells, neural stem (NS) cells, and brain tumour-derived stem cells. Biallelic-tagged clonal lines were readily derived and used to define Olig2 chromatin-bound interacting partners. Using our novel web-based design tool, we established a 96-well format pipeline that enabled V5-tagging of sixty different transcription factors. This efficient, selection-free and scalable epitope tagging pipeline enables systematic surveys of protein expression levels, subcellular localization, and interactors across diverse mammalian stem cells.
0

Multiomics uncovers the epigenomic and transcriptomic response to viral and bacterial stimulation in turbot

Óscar Aramburu et al.Feb 15, 2024
Abstract Uncovering the epigenomic regulation of immune responses is essential for a comprehensive understanding of host defence mechanisms, though remains poorly investigated in farmed fish. We report the first annotation of the innate immune regulatory response in the turbot genome (Scophthalmus maximus), integrating RNA-Seq with ATAC-Seq and ChIP-Seq (H3K4me3, H3K27ac and H3K27me3) data from head kidney (in vivo) and primary leukocyte cultures (in vitro) 24 hours post-stimulation with viral (poly I:C) and bacterial (inactive Vibrio anguillarum ) mimics. Among the 8,797 differentially expressed genes (DEGs), we observed enrichment of transcriptional activation pathways in response to Vibrio and immune pathways - including interferon stimulated genes - for poly I:C. We identified notable differences in chromatin accessibility (20,617 in vitro, 59,892 in vivo) and H3K4me3-bound regions (11,454 in vitro, 10,275 in vivo) between stimulations and controls. Overlap of DEGs with promoters showing differential accessibility or histone mark binding revealed significant coupling of the transcriptome and chromatin state. DEGs with activation marks in their promoters were enriched for similar functions to the global DEG set, but not always, suggesting key regulatory genes being in poised state. Active promoters and putative enhancers were enriched in specific transcription factor binding motifs, many common to viral and bacterial responses. Finally, an in-depth analysis of immune response changes in chromatin state surrounding key DEGs encoding transcription factors was performed. This multi-omics investigation provides an improved understanding of the epigenomic basis for the turbot immune responses and provides novel functional genomic information, leverageable for disease resistance selective breeding.