AK
Annet Kirabo
Author with expertise in Mitochondrial Dynamics and Reactive Oxygen Species Regulation
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
22
(77% Open Access)
Cited by:
474
h-index:
31
/
i10-index:
67
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

DC isoketal-modified proteins activate T cells and promote hypertension

Annet Kirabo et al.Sep 17, 2014
+26
A
V
A
Oxidative damage and inflammation are both implicated in the genesis of hypertension; however, the mechanisms by which these stimuli promote hypertension are not fully understood. Here, we have described a pathway in which hypertensive stimuli promote dendritic cell (DC) activation of T cells, ultimately leading to hypertension. Using multiple murine models of hypertension, we determined that proteins oxidatively modified by highly reactive γ-ketoaldehydes (isoketals) are formed in hypertension and accumulate in DCs. Isoketal accumulation was associated with DC production of IL-6, IL-1β, and IL-23 and an increase in costimulatory proteins CD80 and CD86. These activated DCs promoted T cell, particularly CD8+ T cell, proliferation; production of IFN-γ and IL-17A; and hypertension. Moreover, isoketal scavengers prevented these hypertension-associated events. Plasma F2-isoprostanes, which are formed in concert with isoketals, were found to be elevated in humans with treated hypertension and were markedly elevated in patients with resistant hypertension. Isoketal-modified proteins were also markedly elevated in circulating monocytes and DCs from humans with hypertension. Our data reveal that hypertension activates DCs, in large part by promoting the formation of isoketals, and suggest that reducing isoketals has potential as a treatment strategy for this disease.
1

Three-Dimensional Mitochondria Reconstructions of Murine Cardiac Muscle Changes in Size Across Aging

Zer Vue et al.Apr 24, 2022
+39
C
D
Z
ABSTRACT With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria break down and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the 3D networks in cardiac muscle samples of male mice at aging intervals of 3 months, 1 year, and 2 years. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the 3D volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1 , which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.
1
Citation6
0
Save
44

3D Reconstruction of Murine Mitochondria Exhibits Changes in Structure Across Aging Linked to the MICOS Complex

Zer Vue et al.Mar 23, 2022
+52
B
C
Z
ABSTRACT Background During aging, muscle gradually undergoes loss of function including sarcopenia, losing mass, strength, endurance, and oxidative capacity. While mitochondrial aging is associated with decreased mitochondrial capacity, the genes associated with morphological changes in mitochondria during aging still require further elucidation. Furthermore, it is not completely understood how 3D mitochondrial structures are altered during aging in skeletal muscle and cardiac tissues. Methods We measured changes in mitochondrial morphology and mitochondrial complexity during the aging of murine gastrocnemius, soleus, and cardiac tissues using serial block face- scanning electron microscopy and 3D reconstruction. Lipidomic and metabolomic analysis elucidated concomitant changes associated with aging. We also used qPCR, transmission electron microscopy quantification, Seahorse Analyzer, and metabolomics to evaluate changes in mitochondria morphology and function upon loss of the MICOS complex. Results We identified significant changes in 3D mitochondrial size and network configuration in murine gastrocnemius, soleus, and cardiac tissue during aging. These changes were concomitant with loss of mitochondria contact site and cristae organizing system (MICOS) gene expression during aging. Mitochondrial morphology was similar between aged mice and young mice. We show an age-related loss of the MICOS complex (Chchd3, chchd6, and Mitofilin) while their knockout results in alterations in mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we perform cellular metabolic profiling of young and aged tissues. Metabolomics and lipidomics showed profound alterations, including in membrane integrity, that support our observations of age-related changes in these muscle tissues. Discussion In tandem, our data suggest a relationship between the MICOS complex and aging, which could be linked to disease states with further 3D reconstruction studies. Our study highlights the importance of understanding tissue-dependent 3D mitochondrial phenotypical changes which occur across aging with evolutionary conservation between Drosophila and murine models. Graphical Abstract
44
Citation3
0
Save
1

Alterations in Cardiovascular and Cerebral Pulse Wave Velocity in 5XFAD Murine Model of Alzheimer’s Disease

Andrea Marshall et al.Jun 25, 2023
+19
T
K
A
Abstract Alzheimer’s Disease (AD) is a global health issue, affecting over 6 million in the United States, with that number expected to increase as the aging population grows. As a neurodegenerative disorder that affects memory and cognitive functions, it is well established that AD is associated with cardiovascular risk factors beyond only cerebral decline. However, the study of cerebrovascular techniques for AD is still evolving. Here, we provide reproducible methods to measure impedance-based pulse wave velocity (PWV), a marker of arterial stiffness, in the systemic vascular (aortic PWV) and in the cerebral vascular (cerebral PWV) systems. Using aortic impedance and this relatively novel technique of cerebral impedance to comprehensively describe the systemic vascular and the cerebral vascular systems, we examined the sex-dependent differences in 5x transgenic mice (5XFAD) with AD under normal and high-fat diet, and in wild-type mice under a normal diet. Additionally, we validated our method for measuring cerebrovascular impedance in a model of induced stress in 5XFAD. Together, our results show that sex and diet differences in wildtype and 5XFAD mice account for very minimal differences in cerebral impedance. Interestingly, 5XFAD, and not wildtype, male mice on a chow diet show higher cerebral impedance, suggesting pathological differences. Opposingly, when we subjected 5XFAD mice to stress, we found that females showed elevated cerebral impedance. Using this validated method of measuring impedance-based aortic and cerebral PWV, future research may explore the effects of modifying factors including age, chronic diet, and acute stress, which may mediate cardiovascular risk in AD. New and Noteworthy Here, we presented a new technique which is an application of the concept of aortic impedance to determining cerebral impedance. While aortic PWV is typically utilized to study aortic stiffness, we also developed a technique of cerebral PWV to study cerebral vascular stiffness. This method may be useful in improving the rigor of studies that seek to have a dual focus on cardiovascular and cerebral function.
1
Citation1
0
Save
0

Quantitative assessment of morphological changes in lipid droplets and lipid–mito interactions with aging in brown adipose

Amber Crabtree et al.Aug 13, 2024
+32
J
K
A
Abstract The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LDs) within the brown adipocytes and a high abundance of iron‐containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle‐to‐organelle contacts. For example, the contact sites that mediate mitochondria–LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and the proteins that modulate organelle contact sites. However, how mitochondria–LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age‐related changes in LD morphology and mitochondria–lipid interactions in BAT. We examined the three‐dimensional morphology of mitochondria and LDs in young (3‐month) and aged (2‐year) murine BAT using serial block face‐scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Our analyses showed reductions in LD volume, area, and perimeter in aged samples in comparison to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for the mitochondria interacting with LDs. Overall, these data define the nature of LD morphology and organelle–organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology with mitochondrial function, metabolism, and bioactivity in aged BAT.
0
Citation1
0
Save
0

Innovative assessment of lipid‐induced oxidative stress and inflammation in harvested human endothelial cells

Mohammad Saleem et al.Jun 1, 2024
+5
A
T
M
Studying acute changes in vascular endothelial cells in humans is challenging. We studied ten African American women and used the J-wire technique to isolate vein endothelial cells before and after a four-hour lipid and heparin infusion. Dynamic changes in lipid-induced oxidative stress and inflammatory markers were measured with fluorescence-activated cell sorting. We used the surface markers CD31 and CD144 to identify human endothelial cells. Peripheral blood mononuclear cells isolated from blood were used as a negative control. The participants received galantamine (16 mg/day) for 3 months. We previously demonstrated that galantamine treatment effectively suppresses lipid-induced oxidative stress and inflammation. In this study, we infused lipids to evaluate its potential to increase the activation of endothelial cells, as assessed by the levels of CD54+ endothelial cells and expression of Growth arrest-specific 6 compared to the baseline sample. Further, we aimed to investigate whether lipid infusion led to increased expression of the oxidative stress markers IsoLGs and nitrotyrosine in endothelial cells. This approach will expedite the in vivo identification of novel pathways linked with endothelial cell dysfunction induced by oxidative stress and inflammatory cytokines. This study describes an innovative method to harvest and study human endothelial cells and demonstrates the dynamic changes in oxidative stress and inflammatory markers release induced by lipid infusion.
0
Citation1
0
Save
0

Intermuscular adipose tissue accumulation is associated with higher tissue sodium in healthy individuals

Lale Ertuğlu et al.Jul 1, 2024
+14
A
M
L
High tissue sodium accumulation and intermuscular adipose tissue (IMAT) are associated with aging, type 2 diabetes, and chronic kidney disease. In this study, we aim to investigate whether high lower-extremity tissue sodium accumulation relates to IMAT quantity and whether systemic inflammatory mediators and adipocytokines contribute to such association.
0
Citation1
0
Save
0

Mitochondrial Structure and Function in Human Heart Failure

Antentor Hinton et al.Jul 4, 2024
+4
K
S
A
Despite clinical and scientific advancements, heart failure is the major cause of morbidity and mortality worldwide. Both mitochondrial dysfunction and inflammation contribute to the development and progression of heart failure. Although inflammation is crucial to reparative healing following acute cardiomyocyte injury, chronic inflammation damages the heart, impairs function, and decreases cardiac output. Mitochondria, which comprise one third of cardiomyocyte volume, may prove a potential therapeutic target for heart failure. Known primarily for energy production, mitochondria are also involved in other processes including calcium homeostasis and the regulation of cellular apoptosis. Mitochondrial function is closely related to morphology, which alters through mitochondrial dynamics, thus ensuring that the energy needs of the cell are met. However, in heart failure, changes in substrate use lead to mitochondrial dysfunction and impaired myocyte function. This review discusses mitochondrial and cristae dynamics, including the role of the mitochondria contact site and cristae organizing system complex in mitochondrial ultrastructure changes. Additionally, this review covers the role of mitochondria-endoplasmic reticulum contact sites, mitochondrial communication via nanotunnels, and altered metabolite production during heart failure. We highlight these often-neglected factors and promising clinical mitochondrial targets for heart failure.
0
Citation1
0
Save
0

The MICOS Complex Regulates Mitochondrial Structure and Oxidative Stress During Age-Dependent Structural Deficits in the Kidney

Zer Vue et al.Jun 10, 2024
+49
L
P
Z
ABSTRACT The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health. Translational Statement Due to aging, the efficiency of kidney functions begins to decrease and the risk of kidney diseases may increase, but specific regulators of mitochondrial age-related changes are poorly explained. This study demonstrates the MICOS complex may be a target for mitigating age-related changes in mitochondria. The MICOS complex can be associated with oxidative stress and calcium dysregulation, which also arise in many kidney pathologies. Graphical Abstract Kidney aging causes a decline in the MICOS complex, concomitant with metabolic, lipidomic, and mitochondrial structural alterations.
0

Myeloid Cell Glucocorticoid, Not Mineralocorticoid Receptor Signaling, Contributes to Salt-Sensitive Hypertension in Humans via Cortisol

Claude Albritton et al.Jun 12, 2024
+17
K
M
C
ABSTRACT BACKGROUND Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality, yet the etiology is poorly understood. We previously found that serum/glucocorticoid-regulated kinase 1 (SGK1) and epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel (ENaC)-dependent sodium entry into monocyte-derived antigen-presenting cells (APCs) and activation of NADPH oxidase, leading to the formation of isolevuglandins (IsoLGs) in SSBP. Whereas aldosterone via the mineralocorticoid receptor (MR) activates SGK1 leading to hypertension, our past findings indicate that levels of plasma aldosterone do not correlate with SSBP, and there is little to no MR expression in APCs. Thus, we hypothesized that cortisol acting via the glucocorticoid receptor (GR), not the MR in APCs mediates SGK1 actions to induce SSBP. METHODS We performed cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) analysis on peripheral blood mononuclear cells of humans rigorously phenotyped for SSBP using an inpatient salt loading/depletion protocol to determine expression of MR, GR, and SGK1 in immune cells. In additional experiments, we performed bulk transcriptomic analysis on isolated human monocytes following in vitro treatment with high salt from a separate cohort. We then measured urine and plasma cortisol, cortisone, renin, and aldosterone. Subsequently, we measured the association of these hormones with changes in systolic, diastolic, mean arterial pressure and pulse pressure as well as immune cell activation via IsoLG formation. RESULTS We found that myeloid APCs predominantly express the GR and SGK1 with no expression of the MR. Expression of the GR in APCs increased after salt loading and decreased with salt depletion in salt-sensitive but not salt-resistant people and was associated with increased expression of SGK1 . Moreover, we found that plasma and urine cortisol/cortisone but not aldosterone/renin correlated with SSBP and APCs activation via IsoLGs. We also found that cortisol negatively correlates with EETs. CONCLUSION Our findings suggest that renal cortisol signaling via the GR but not the MR in APCs contributes to SSBP via cortisol. Urine and plasma cortisol may provide an important currently unavailable feasible diagnostic tool for SSBP. Moreover, cortisol-GR-SGK1-ENaC signaling pathway may provide treatment options for SSBP. Novelty and Relevance What Is New? Although salt sensitivity is a major risk factor for cardiovascular morbidity and mortality, the mechanisms underlying the salt sensitivity of blood pressure (SSBP) are poorly understood. High salt modifies glucocorticoid-receptor expression in antigen-presenting cells (APCs), suggesting a critical role of glucocorticoids in SSBP. Elevated glucocorticoid receptor (GR) expression compared to mineralocorticoid receptor (MR) expression in APCs provides evidence for a GR-dependent pathway to SSBP. Isolevuglandins (IsoLGs) increased in APCs in vitro after hydrocortisone treatment compared to aldosterone treatment, indicating that cortisol was the predominant driver of IsoLG production in these cells. Our studies suggest a mechanism for SGK1 expression through GR activation by cortisol that differs from the currently accepted mechanism for SSBP pathogenesis. What Is Relevant? Although aldosterone has been used to study SSBP, there has been no consideration of cortisol as a major driver of the condition. Understanding alternative inflammatory pathways that affect SSBP may provide insights into the mechanism of SSBP and suggest a range of therapeutic targets. Our studies may provide a practical approach to understanding and treating salt-sensitive hypertension. Clinical/Pathophysiological Implications? Our findings firmly support a GR-dependent signaling pathway for activating SSBP via SGK1 expression. A cortisol-driven mechanism could provide a practical approach for targeted treatments for salt-sensitive hypertension. Moreover, it could pave the way for a diagnostic approach.
Load More