JS
Jacqueline Stöckli
Author with expertise in Brown Adipose Tissue Function and Physiology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
1,098
h-index:
30
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Characterization of the Role of the Rab GTPase-activating Protein AS160 in Insulin-regulated GLUT4 Trafficking

Mark Larance et al.Sep 10, 2005
+8
J
G
M
Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane. In the present study we have conducted a comprehensive proteomic analysis of affinity-purified GLUT4 vesicles from 3T3-L1 adipocytes to discover potential regulators of GLUT4 trafficking. In addition to previously identified components of GLUT4 storage vesicles including the insulin-regulated aminopeptidase insulin-regulated aminopeptidase and the vesicle soluble N-ethylmaleimide factor attachment protein (v-SNARE) VAMP2, we have identified three new Rab proteins, Rab10, Rab11, and Rab14, on GLUT4 vesicles. We have also found that the putative Rab GTPase-activating protein AS160 (Akt substrate of 160 kDa) is associated with GLUT4 vesicles in the basal state and dissociates in response to insulin. This association is likely to be mediated by the cytosolic tail of insulin-regulated aminopeptidase, which interacted both in vitro and in vivo with AS160. Consistent with an inhibitory role of AS160 in the basal state, reduced expression of AS160 in adipocytes using short hairpin RNA increased plasma membrane levels of GLUT4 in an insulin-independent manner. These findings support an important role for AS160 in the insulin regulated trafficking of GLUT4.
0

Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2

Sean Humphrey et al.May 16, 2013
+4
P
G
S
A major challenge of the post-genomics era is to define the connectivity of protein phosphorylation networks. Here, we quantitatively delineate the insulin signaling network in adipocytes by high-resolution mass spectrometry-based proteomics. These data reveal the complexity of intracellular protein phosphorylation. We identified 37,248 phosphorylation sites on 5,705 proteins in this single-cell type, with approximately 15% responding to insulin. We integrated these large-scale phosphoproteomics data using a machine learning approach to predict physiological substrates of several diverse insulin-regulated kinases. This led to the identification of an Akt substrate, SIN1, a core component of the mTORC2 complex. The phosphorylation of SIN1 by Akt was found to regulate mTORC2 activity in response to growth factors, revealing topological insights into the Akt/mTOR signaling network. The dynamic phosphoproteome described here contains numerous phosphorylation sites on proteins involved in diverse molecular functions and should serve as a useful functional resource for cell biologists.
0

Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates

Nolan Hoffman et al.Oct 3, 2015
+15
R
B
N

Summary

 Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high-intensity exercise bout, revealing 1,004 unique exercise-regulated phosphosites on 562 proteins. These included substrates of known exercise-regulated kinases (AMPK, PKA, CaMK, MAPK, mTOR), yet the majority of kinases and substrate phosphosites have not previously been implicated in exercise signaling. Given the importance of AMPK in exercise-regulated metabolism, we performed a targeted in vitro AMPK screen and employed machine learning to predict exercise-regulated AMPK substrates. We validated eight predicted AMPK substrates, including AKAP1, using targeted phosphoproteomics. Functional characterization revealed an undescribed role for AMPK-dependent phosphorylation of AKAP1 in mitochondrial respiration. These data expose the unexplored complexity of acute exercise signaling and provide insights into the role of AMPK in mitochondrial biochemistry.
0
Citation345
0
Save
15

The genetic and dietary landscape of the muscle insulin signalling network

Julian Gerwen et al.Jun 22, 2023
+7
H
S
J
Abstract Metabolic disease is caused by a combination of genetic and environmental factors, yet few studies have examined how these factors influence signal transduction, a key mediator of metabolism. Using mass spectrometry-based phosphoproteomics, we quantified 23,126 phosphosites in skeletal muscle of five genetically distinct mouse strains in two dietary environments, with and without acute in vivo insulin stimulation. Almost half of the insulin-regulated phosphoproteome was modified by genetic background on an ordinary diet, and high-fat high-sugar feeding affected insulin signalling in a strain-dependent manner. Our data revealed coregulated subnetworks within the insulin signalling pathway, expanding our understanding of the pathway’s organisation. Furthermore, associating diverse signalling responses with insulin-stimulated glucose uptake uncovered regulators of muscle insulin responsiveness, including the regulatory phosphosite S469 on Pfkfb2, a key activator of glycolysis. Finally, we confirmed the role of glycolysis in modulating insulin action in insulin resistance. Our results underscore the significance of genetics in shaping global signalling responses and their adaptability to environmental changes, emphasizing the utility of studying biological diversity with phosphoproteomics to discover key regulatory mechanisms of complex traits.
15
Citation1
0
Save
0

The metabolic consequences of ‘yo-yo’ dieting are markedly influenced by genetic diversity

Senthil Thillainadesan et al.Jul 3, 2024
+12
K
A
S
Weight loss can improve the metabolic complications of obesity. However, it is unclear whether insulin resistance persists despite weight loss and whether any protective benefits are preserved following weight regain (weight cycling). The impact of genetic background on weight cycling is undocumented. We aimed to investigate the effects of weight loss and weight cycling on metabolic outcomes and sought to clarify the role of genetics in this relationship.
0
Citation1
0
Save
20

Leveraging genetic diversity to identify small molecules that reverse mouse skeletal muscle insulin resistance

Stewart Masson et al.Mar 3, 2023
+10
K
S
S
Abstract Systems genetics has begun to tackle the complexity of insulin resistance by capitalising on computational advances to study high-diversity populations. “Diversity Outbred in Australia (DOz)” is a population of genetically unique mice with profound metabolic heterogeneity. We leveraged this variance to explore skeletal muscle’s contribution to whole-body insulin action through metabolic phenotyping and skeletal muscle proteomics of 215 DOz mice. Linear modelling identified 553 proteins that associated with whole-body insulin sensitivity (Matsuda Index) including regulators of endocytosis and muscle proteostasis. To enrich for causality, we refined this network by focussing on negatively associated, genetically regulated proteins, resulting in a 76-protein fingerprint of insulin resistance. We sought to perturb this network and restore insulin action with small molecules by integrating the Broad Institute Connectivity Map platform and in vitro assays of insulin action using the Prestwick chemical library. These complimentary approaches identified the antibiotic thiostrepton as an insulin resistance reversal agent. Subsequent validation in ex vivo insulin resistant mouse muscle, and palmitate induced insulin resistant myotubes demonstrated potent insulin action restoration, potentially via up-regulation of glycolysis. This work demonstrates the value of a drug-centric framework to validate systems level analysis by identifying potential therapeutics for insulin resistance.
0

Genome wide analysis in Drosophila reveals diet by gene interactions and uncovers diet-responsive genes

Dorthe Francis et al.Jul 30, 2019
+8
E
S
D
Genetic and environmental factors play a major role in metabolic health. However, they do not act in isolation, as a change in an environmental factor such as diet may exert different effects based on an individual’s genotype. Here, we sought to understand how such gene-diet interactions influenced nutrient storage and utilisation, a major determinant of metabolic disease. We subjected the Drosophila Genetic Reference Panel (DGRP), comprising 200 genetically divergent inbred fly strains, to diets varying in sugar, fat and protein. We assessed starvation resistance, a holistic phenotype of nutrient storage and utilisation that can be robustly measured. Diet influenced the starvation resistance of each strain, but this effect varied markedly between strains. This demonstrates that genetics plays a major role in the response to diet. Furthermore, heritability analysis revealed that the greatest variability arose from diets either high in sugar or high in protein. To uncover the genetic underpinnings of this variation, we mapped 1,239 diet-responsive SNPs in 534 genes, 325 of which have human orthologues. Using whole-body knockdown, we confirmed that 30 candidate genes were required for glucose tolerance, storage and utilization. In particular, we characterised CG4607, a GLUT6/GLUT8 homolog, as a key protein involved in sugar tolerance. Overall, this provides strong evidence that genetics is a major contributor to how individuals respond to diets of varying nutrient composition. It is likely that a similar principle may be applied to metabolic disease in higher organisms thus supporting the case for nutrigenomics as an important health strategy.
0

Genetic variance in the murine defensin locus modulates glucose homeostasis

Stewart Masson et al.Jul 26, 2024
+16
H
R
S
Abstract Insulin resistance is heritable; however, the underlying genetic drivers remain elusive. In seeking these, we performed genetic mapping of insulin sensitivity in 670 chow-fed Diversity Outbred in Australia (DOz) mice and identified a genome-wide significant quantitative trait loci (QTL) within the chromosome 8 defensin gene cluster. Defensins are antimicrobial peptides secreted from Paneth cells into the intestinal lumen that can alter the abundance of beneficial and detrimental microbes. Proteomic analysis of the small intestine from Diversity Outbred founder strains revealed that alpha-defensin 26 positively correlated with whole-body insulin sensitivity, and founder strain genetic contributions to the insulin sensitivity QTL. To validate these findings, we synthesised the secreted form of alpha-defensin 26 and performed diet supplementation experiments in two mouse strains with distinct endogenous alpha-defensin 26 expression levels. In validation of our DOz data, the strain with lower endogenous expression (C57BL/6J) exhibited improved insulin sensitivity and reduced gut permeability following defensin supplementation. In contrast, the higher expressing strain (A/J) exhibited hypoinsulinemia, glucose intolerance and muscle wasting. Gut microbiome profiling in these mice revealed both global and strain-specific changes including some observed in DOz mice positive for the putative insulin sensitivity allele. Inspired by previous work linking glucose homeostasis to gut microbiome mediated changes in plasma bile acids, we investigated these as a potential mechanism. As with metabolic changes, A/J but not C57BL/6J mice exhibited differential plasma bile acid concentrations following defensin supplementation. These data highlight the importance of considering individual differences when designing metabolic therapeutics and paves the way for further studies investigating links between the host genetics and the microbiome.
25

Deep proteome profiling of white adipose tissue reveals marked conservation and distinct features between different anatomical depots

Søren Madsen et al.Aug 24, 2022
+7
V
M
S
ABSTRACT White adipose tissue is deposited mainly as subcutaneous adipose tissue (SAT), often associated with metabolic protection, and abdominal/visceral adipose tissue (VAT), which contributes to metabolic disease. To investigate the molecular underpinnings of these differences, we conducted comprehensive proteomics profiling of whole tissue and isolated adipocytes from these two depots across two diets from C57Bl/6J mice. The adipocyte proteomes from lean mice were highly conserved between depots, with the major depot-specific differences encoded by just 3% of the proteome. Adipocytes from SAT (SAdi) were enriched in pathways related to mitochondrial complex I and beiging, whereas visceral adipocytes (VAdi) were enriched in structural proteins and positive regulators of mTOR presumably to promote nutrient storage and cellular expansion. This indicates that SAdi are geared toward higher catabolic activity, while VAdi are more suited for lipid storage. By comparing adipocytes from mice fed chow or Western diet (WD), we define a core adaptive proteomics signature consisting of increased extracellular matrix proteins and decreased fatty acid metabolism and mitochondrial Coenzyme Q biosynthesis. Relative to SAdi, VAdi displayed greater changes with WD including a pronounced decrease in mitochondrial proteins concomitant with upregulation of apoptotic signaling and decreased mitophagy, indicating pervasive mitochondrial stress. Furthermore, WD caused reduction in lipid handling and glucose uptake pathways particularly in VAdi, consistent with adipocyte de-differentiation. By overlaying the proteomics changes with diet in whole adipose tissue and isolated adipocytes, we uncovered concordance between adipocytes and tissue only in the VAT, indicating a unique tissue-specific adaptation to sustained WD in SAT. Finally, an in-depth comparison of isolated adipocytes and 3T3-L1 proteomes revealed a high degree of overlap, supporting the utility of the 3T3-L1 adipocyte model. These deep proteomes provide an invaluable resource highlighting differences between white adipose depots that may fine-tune their unique functions and adaptation to an obesogenic environment.
0

Identification of SEC61B as a novel regulator of calcium flux and platelet hyperreactivity in diabetes mellitus

Yvonne Kong et al.Feb 21, 2024
+27
C
R
Y
Abstract High platelet reactivity is associated with adverse clinical events and is more frequent in people with diabetes mellitus (DM). To better understand platelet dysfunction in DM, we performed a proteomic analysis in platelets from a matched cohort of 34 people without, and 42 people with type 2 DM. The cohorts were matched by clinical characteristics including age, sex, and coronary artery disease burden. Using high sensitivity unbiased proteomics, we consistently identified over 2,400 intracellular proteins, and detected proteins that are differentially released by platelets from people with diabetes in response to low dose thrombin. Importantly, we identified the endoplasmic reticulum (ER) protein SEC61 translocon subunit beta (SEC61B) was increased in platelets from humans and mice with in vivo hyperglycemia. SEC61B was increased in megakaryocytes in mouse models of diabetes, in association with megakaryocyte ER stress. A rise in cytosolic calcium is a key aspect in platelet activation, and the SEC61 translocon is known to act as a channel for ER calcium leak. We demonstrate that cultured cells overexpressing SEC61B have increased calcium flux and decreased protein synthesis. In accordance, hyperglycemic mouse platelets mobilized more calcium to the cytosol and had lower protein synthesis compared with normoglycemic platelets. Independently, in vitro induction of ER stress increased platelet SEC61B expression and markers of platelet activation. We propose a mechanism whereby ER stress-induced upregulation of platelet SEC61B leads to increased cytosolic calcium, potentially contributing to platelet hyperactivity in people with diabetes. Key Points Platelet SEC61B is increased in hyperglycemia and contributes to increased endoplasmic reticulum (ER) calcium leak Increased ER calcium leak is associated with ER stress and platelet hyperactivity