MM
Michael Morgan
Author with expertise in Ubiquitin-Proteasome Proteolytic Pathway
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
9
h-index:
16
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
54

Measuring DNA mechanics on the genome scale

Aakash Basu et al.Aug 18, 2020
+12
D
J
A
Abstract Mechanical deformations of DNA such as bending are ubiquitous and implicated in diverse cellular functions 1 . However, the lack of high-throughput tools to directly measure the mechanical properties of DNA limits our understanding of whether and how DNA sequences modulate DNA mechanics and associated chromatin transactions genome-wide. We developed an assay called loop-seq to measure the intrinsic cyclizability of DNA – a proxy for DNA bendability – in high throughput. We measured the intrinsic cyclizabilities of 270,806 50 bp DNA fragments that span the entire length of S. cerevisiae chromosome V and other genomic regions, and also include random sequences. We discovered sequence-encoded regions of unusually low bendability upstream of Transcription Start Sites (TSSs). These regions disfavor the sharp DNA bending required for nucleosome formation and are co-centric with known Nucleosome Depleted Regions (NDRs). We show biochemically that low bendability of linker DNA located about 40 bp away from a nucleosome edge inhibits nucleosome sliding into the linker by the chromatin remodeler INO80. The observation explains how INO80 can create promoter-proximal nucleosomal arrays in the absence of any other factors 2 by reading the DNA mechanical landscape. We show that chromosome wide, nucleosomes are characterized by high DNA bendability near dyads and low bendability near the linkers. This contrast increases for nucleosomes deeper into gene bodies, suggesting that DNA mechanics plays a previously unappreciated role in organizing nucleosomes far from the TSS, where nucleosome remodelers predominate. Importantly, random substitution of synonymous codons does not preserve this contrast, suggesting that the evolution of codon choice has been impacted by selective pressure to preserve sequence-encoded mechanical modulations along genes. We also provide evidence that transcription through the TSS-proximal nucleosomes is impacted by local DNA mechanics. Overall, this first genome-scale map of DNA mechanics hints at a ‘mechanical code’ with broad functional implications.
54
Citation9
0
Save
0

Ubiquitinated histone H2B as gatekeeper of the nucleosome acidic patch

Chad Hicks et al.Feb 22, 2024
+7
S
S
C
ABSTRACT Monoubiquitination of histones H2B-K120 (H2BK120ub) and H2A-K119 (H2AK119ub) play opposing roles in regulating transcription and chromatin compaction. H2BK120ub is a hallmark of actively transcribed euchromatin, while H2AK119ub is highly enriched in transcriptionally repressed heterochromatin. Whereas H2BK120ub is known to stimulate the binding or activity of various chromatin-modifying enzymes, this post-translational modification (PTM) also interferes with the binding of several proteins to the nucleosome H2A/H2B acidic patch via an unknown mechanism. Here we report cryoEM structures of an H2BK120ub nucleosome showing that ubiquitin adopts discrete positions that occlude the acidic patch. Molecular dynamics simulations show that ubiquitin remains stably positioned over this nucleosome region. By contrast, our cryoEM structures of H2AK119ub nucleosomes show ubiquitin adopting discrete positions that minimally occlude the acidic patch. Consistent with these observations, H2BK120ub, but not H2AK119ub, abrogates nucleosome interactions with acidic patch-binding proteins RCC1 and LANA, and single-domain antibodies specific to this region. Our results suggest a mechanism by which H2BK120ub serves as a gatekeeper to the acidic patch and point to distinct roles for histone H2AK119 and H2BK120 ubiquitination in regulating protein binding to nucleosomes.
0

FACT and Ubp10 collaborate to modulate H2B deubiquitination and nucleosome dynamics

Melesse Nune et al.Aug 22, 2018
+6
Z
M
M
Monoubiquitination of histone H2B (H2B-Ub) plays a role in transcription and DNA replication, and is required for normal localization of the histone chaperone, FACT. In yeast, H2B-Ub is deubiquitinated by Ubp8, a subunit of SAGA, and Ubp10. Although they target the same substrate, loss of Ubp8 and Ubp10 causes different phenotypes and alters the transcription of different genes. We show that Ubp10 has poor activity on yeast nucleosomes, but that addition of FACT stimulates Ubp10 activity on nucleosomes and not on other substrates. Consistent with a role for FACT in deubiquitinating H2B in vivo, a FACT mutant strain shows elevated levels of H2B-Ub. Combination of FACT mutants with deletion of Ubp10, but not Ubp8, confers increased sensitivity to hydroxyurea and activates a cryptic transcription reporter, suggesting that FACT and Ubp10 may coordinate nucleosome assembly during DNA replication and transcription. Our findings reveal unexpected interplay between H2B deubiquitination and nucleosome dynamics.
0

Active site alanine substitutions can convert deubiquitinating enzymes into avid ubiquitin-binding domains

Marie Morrow et al.Dec 22, 2017
+6
M
M
M
A common strategy for studying the biological role of deubiquitinating enzymes (DUBs) in different pathways is to study the effects of replacing the wild type DUB with a catalytically inactive mutant in cells. We report here that a commonly studied DUB mutation, in which the catalytic cysteine is replaced with alanine, can dramatically increase the affinity of some DUBs for ubiquitin. Overexpression of these tight-binding mutants thus has the potential to sequester cellular pools of monoubiquitin and ubiquitin chains. As a result, cells expressing these mutants may display unpredictable dominant negative physiological effects that are not related to loss of DUB activity. The structure of the SAGA DUB module bound to free ubiquitin reveals the structural basis for the 30-fold higher affinity of Ubp8C146A for ubiquitin. We show that an alternative option, substituting the active site cysteine with arginine, can inactivate DUBs while also decreasing the affinity for ubiquitin.
8

Potent macrocycle inhibitors of the human SAGA deubiquitinating module

Michael Morgan et al.May 14, 2021
C
H
T
M
Abstract The SAGA transcriptional coactivator contains a four-protein subcomplex called the DUB module that removes ubiquitin from histone H2B-K120. The human DUB module contains the catalytic subunit, USP22, which is overexpressed in a number of cancers that are resistant to available therapies. We screened a massive combinatorial library of cyclic peptides and identified potent inhibitors of USP22. The top hit was highly specific for USP22 as compared to a panel of 44 other human DUBs. Cells treated with peptide had increased levels of H2B monoubiquitination, demonstrating the ability of the cyclic peptides to enter human cells and inhibit H2B deubiquitination. These macrocycle inhibitors are, to our knowledge, the first reported inhibitors of USP22/SAGA DUB module and show promise for development.