AP
Andrew Purkiss
Author with expertise in Regulation of RNA Processing and Function
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1
h-index:
29
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Evolution and inhibition of the FIKK effector kinase family inP. falciparum

Hugo Belda et al.Feb 23, 2024
Abstract Among the ∼200 Plasmodium species that infect vertebrates, six infect humans. Of these, P. falciparum causes >95% of all ∼500,000 annual fatalities. Phylogenetically, P. falciparum belongs to the Laverania subgenus, a group of Plasmodium species that infect great apes. Common to Laverania species is the family of FIKK kinases. One million years ago, a single FIKK kinase conserved in all Plasmodium species gained an export element in the Laverania subgenus and expanded into the family of ∼20 atypical FIKK kinases, most of which are exported into the host cell. The fikk genes are conserved in syntenic loci across the Laverania , arguing for a rapid expansion controlling important functions in host cell remodelling and pathogenesis. We provide evidence that the FIKK paralogues evolved specific and mutually exclusive phosphorylation motif preferences, conserved across their Laverania orthologues, in a short evolutionary timeframe. Surprisingly, we find that FIKK13 has evolved exclusive tyrosine-phosphorylation preference, which was thought to be absent in Plasmodium species. Combining a crystal structure with AlphaFold2 predictions, we identify residues that determine kinase-specificity within the FIKK family in a fast-evolving flexible loop. Finally, we show that all expressed members of the FIKK kinase family can be chemically inhibited in vitro using a single compound. Such a pan-specific inhibitor of this kinase family important for virulence could reduce the ability of the parasite to gain escape-mutations and resistance.
11

A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing

S. Adams et al.Sep 13, 2020
Abstract RET receptor tyrosine kinase plays vital developmental and neuroprotective roles in metazoans. G DNF family ligands (GFLs) when bound to cognate GFRα co-receptors recognise and activate RET stimulating its cytoplasmic kinase function. The principles for RET ligand-co-receptor recognition are incompletely understood. Here we report a crystal structure of the cadherin-like module (CLD1-4) from zebrafish RET revealing interdomain flexibility between CLD2-CLD3. Comparison with a cryo-EM structure of a ligand-engaged zebrafish RET ECD -GDNF-GFRα1 complex indicates conformational changes within a clade-specific CLD3 loop adjacent to co-receptor. Our observations indicate RET is a molecular clamp with a flexible calcium-dependent arm that adapts to different GFRα co-receptors, while its rigid arm recognises a GFL dimer to align both membrane-proximal cysteine-rich domains. We also visualise linear arrays of RET ECD -GDNF-GFRα1 suggesting a conserved contact stabilises higher-order species. Our study reveals ligand-co-receptor recognition by RET involves both receptor plasticity and strict spacing of receptor dimers by GFL ligands. Highlights Crystal structure of zebrafish RET cadherin-like module reveals conformational flexibility at the calcium-dependent CLD2-CLD3 interface Comparison of X-ray and cryo-EM structures indicate conformational differences between unliganded and liganded RET involving a clade-specific CLD3 loop Strict spatial separation of RET ECD C-termini is imposed by each cysteine-rich domain interaction with GFL dimer Differences in co-receptor engagement and higher-order ligand-bound RET complexes indicate potentially divergent signalling mechanisms