KK
Kian Koh
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(75% Open Access)
Cited by:
8,582
h-index:
15
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2

Myunggon Ko et al.Nov 5, 2010
Enzymes of the TET family convert 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC) in DNA. Mutations in the gene encoding TET2 are common in myeloid malignancies. These disease-associated mutations are now shown to compromise TET2 catalytic activity: bone-marrow samples from patients with TET2 mutations have low levels of 5-hmC in genomic DNA, and TET2 is required for normal haematopoietic differentiation. Measurement of genomic 5-hmC levels may prove valuable as a diagnostic tool in myeloid cancers. The TET family of enzymes convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. Mutations in the gene encoding TET2 are frequently observed in myeloid malignancies. Here it is shown that these disease-associated mutations compromise TET2 catalytic activity; bone marrow samples from patients with TET2 mutations have low levels of 5hmC in genomic DNA, and TET2 is required for normal haematopoietic differentiation. Measurement of genomic 5hmC levels may prove valuable as a diagnostic tool in myeloid cancers. TET2 is a close relative of TET1, an enzyme that converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA1,2. The gene encoding TET2 resides at chromosome 4q24, in a region showing recurrent microdeletions and copy-neutral loss of heterozygosity (CN-LOH) in patients with diverse myeloid malignancies3. Somatic TET2 mutations are frequently observed in myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes including chronic myelomonocytic leukaemia (CMML), acute myeloid leukaemias (AML) and secondary AML (sAML)4,5,6,7,8,9,10,11,12. We show here that TET2 mutations associated with myeloid malignancies compromise catalytic activity. Bone marrow samples from patients with TET2 mutations displayed uniformly low levels of 5hmC in genomic DNA compared to bone marrow samples from healthy controls. Moreover, small hairpin RNA (shRNA)-mediated depletion of Tet2 in mouse haematopoietic precursors skewed their differentiation towards monocyte/macrophage lineages in culture. There was no significant difference in DNA methylation between bone marrow samples from patients with high 5hmC versus healthy controls, but samples from patients with low 5hmC showed hypomethylation relative to controls at the majority of differentially methylated CpG sites. Our results demonstrate that Tet2 is important for normal myelopoiesis, and suggest that disruption of TET2 enzymatic activity favours myeloid tumorigenesis. Measurement of 5hmC levels in myeloid malignancies may prove valuable as a diagnostic and prognostic tool, to tailor therapies and assess responses to anticancer drugs.
0
Citation1,211
0
Save
0

Tumour hypoxia causes DNA hypermethylation by reducing TET activity

Bernard Thienpont et al.Aug 16, 2016
Hypermethylation of the promoters of tumour suppressor genes represses transcription of these genes, conferring growth advantages to cancer cells. How these changes arise is poorly understood. Here we show that the activity of oxygen-dependent ten-eleven translocation (TET) enzymes is reduced by tumour hypoxia in human and mouse cells. TET enzymes catalyse DNA demethylation through 5-methylcytosine oxidation. This reduction in activity occurs independently of hypoxia-associated alterations in TET expression, proliferation, metabolism, hypoxia-inducible factor activity or reactive oxygen species, and depends directly on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro. In patients, tumour suppressor gene promoters are markedly more methylated in hypoxic tumour tissue, independent of proliferation, stromal cell infiltration and tumour characteristics. Our data suggest that up to half of hypermethylation events are due to hypoxia, with these events conferring a selective advantage. Accordingly, increased hypoxia in mouse breast tumours increases hypermethylation, while restoration of tumour oxygenation abrogates this effect. Tumour hypoxia therefore acts as a novel regulator of DNA methylation. Tumours are epigenetically distinct from their tissue of origin, frequently showing increased DNA methylation of tumour suppressor gene promoters, but how these changes arise is poorly understood. Here, Diether Lambrechts and colleagues report that tumour hypoxia, pervasive in many solid tumours, reduces the activity of the oxygen-dependent ten-eleven translocation (TET) enzymes, which catalyse DNA demethylation through 5-methylcytosine oxidation. They show that oxygen is an important co-factor for TET activity, and hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro and at tumour suppressor genes in hypoxic tumours. The authors propose that tumour hypoxia directly reduces TET activity, leading to changes in DNA methylation and silencing gene expression. Countering hypermethylation by inhibiting DNA methylation or by normalizing tumour blood supply may therefore be of therapeutic benefit.
0

Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX

Myunggon Ko et al.Apr 5, 2013
The CXXC domains of TET2 (encoded by the distinct gene IDAX) and TET3 are found to have previously unknown roles in the regulation of TET proteins through the activation of caspases and subsequent reduction in TET catalytic activity; this regulation is dependent on DNA binding through the CXXC domain. TET family proteins modify the methylation status of DNA by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC, sometimes called the 'fifth base' of DNA) and other intermediates. TET1 and TET3 contain a CXXC domain but the ancestral CXXC domain of TET2 is encoded by a distinct gene, IDAX (or CXXC4). This paper demonstrates that IDAX binds unmethylated CpG-rich DNA via its CXXC domain and recruits TET2. The separate and linked CXXC domains of TET2 and TET3 are shown to act as regulators of caspase activation and TET enzymatic activity. The authors suggest that future studies should focus on the genomic targets of TET2, IDAX and the IDAX-related protein CXXC5 in normal development and in cancer. TET (ten-eleven-translocation) proteins are Fe(ii)- and α-ketoglutarate-dependent dioxygenases1,2,3 that modify the methylation status of DNA by successively oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxycytosine1,3,4,5, potential intermediates in the active erasure of DNA-methylation marks5,6. Here we show that IDAX (also known as CXXC4), a reported inhibitor of Wnt signalling7 that has been implicated in malignant renal cell carcinoma8 and colonic villous adenoma9, regulates TET2 protein expression. IDAX was originally encoded within an ancestral TET2 gene that underwent a chromosomal gene inversion during evolution, thus separating the TET2 CXXC domain from the catalytic domain. The IDAX CXXC domain binds DNA sequences containing unmethylated CpG dinucleotides, localizes to promoters and CpG islands in genomic DNA and interacts directly with the catalytic domain of TET2. Unexpectedly, IDAX expression results in caspase activation and TET2 protein downregulation, in a manner that depends on DNA binding through the IDAX CXXC domain, suggesting that IDAX recruits TET2 to DNA before degradation. IDAX depletion prevents TET2 downregulation in differentiating mouse embryonic stem cells, and short hairpin RNA against IDAX increases TET2 protein expression in the human monocytic cell line U937. Notably, we find that the expression and activity of TET3 is also regulated through its CXXC domain. Taken together, these results establish the separate and linked CXXC domains of TET2 and TET3, respectively, as previously unknown regulators of caspase activation and TET enzymatic activity.
0
Citation341
0
Save
1

The Wnt/TCF7L1 transcriptional repressor axis drives primitive endoderm formation by antagonizing naive and formative pluripotency

Paraskevi Athanasouli et al.May 19, 2022
Abstract Early during preimplantation development and in heterogeneous mouse embryonic stem cells (mESC) culture, pluripotent cells are specified towards either the primed epiblast or the primitive endoderm (PE) lineage. Canonical Wnt signaling is crucial for safeguarding naive pluripotency and embryo implantation, yet the role and relevance of canonical Wnt inhibition during early mammalian development remains unknown. Here, we demonstrate that transcriptional repression exerted by Wnt/TCF7L1 promotes PE differentiation of mESCs and in preimplantation inner cell mass. Time-series RNA sequencing and promoter occupancy data reveal that TCF7L1 binds and represses genes encoding essential naive pluripotency factors and indispensable regulators of the formative pluripotency program, including Otx2 and Lef1 . Consequently, TCF7L1 promotes pluripotency exit and suppresses epiblast lineage formation, thereby driving cells into PE specification. Conversely, deletion of Tcf7l1 abrogates PE differentiation without restraining epiblast priming. Taken together, our study underscores the importance of transcriptional Wnt inhibition in regulating lineage segregation in ESCs and preimplantation embryo development as well as identifies TCF7L1 as key regulator of this process.
1
Citation2
0
Save
1

Osmolar modulation drives reversible cell cycle exit and human pluripotent cell differentiation via NF-κВ and WNT signaling

Jonathan Chui et al.Apr 14, 2023
ABSTRACT Terminally differentiated cells are regarded as the most stable and common cell state in adult organisms as they reside in growth arrest and carry out their cellular function. Improving our understanding of the mechanisms involved in promoting cell cycle exit would facilitate our ability to manipulate pluripotent cells into mature tissues for both pharmacological and therapeutic use. Here, we demonstrated that a hyperosmolar environment enforced a protective p53-independent quiescent state in dedifferentiated hepatoma cells and pluripotent stem cells (PSCs)-derived models of human hepatocytes and endothelial cells, representing the endodermal and mesodermal lineages. Prolonged culture in hyperosmolar conditions stimulated transcriptional and functional cell maturation. Interestingly, hyperosmolar conditions did not only trigger cell cycle exit and cellular maturation but were also necessary to maintain this maturated state, as switching back to plasma osmolarity caused the loss of maturation markers and the gain of proliferative markers. Transcriptome analysis revealed activation of NF-κВ and repression of WNT signaling as the two main pathways downstream of osmolarity-regulated growth arrest and cell maturation, respectively. This study revealed that increased osmolarity serves as a biochemical signal to promote long-term growth arrest, transcriptional changes, and maturation into different lineages, serving as a practical method to generate differentiated hiPSCs that resemble their mature counterpart more closely.
0

Temporal resolution of global gene expression and DNA methylation changes in the final phases of reprogramming towards induced pluripotency.

Michela Bartoccetti et al.Feb 13, 2019
The generation of induced pluripotent stem cells (iPSCs) involves activation of the endogenous pluripotency circuitry and global DNA demethylation late in reprogramming, but temporal resolution of these events using existing markers is insufficient. Here, we generated murine transgenic lines harboring dual fluorescent reporters reflecting cell-state specific expression of the master pluripotency factor Oct4 and the 5-methylcytosine dioxygenase Tet1. By assessing reprogramming intermediates based on dual reporter patterns, we identified a sequential order of Tet1 and Oct4 gene activation at proximal and distal regulatory elements following pluripotency entry. Full induction of Tet1 marks a pivotal late intermediate stage occurring after a phase of global gene repression, and preceding full activation of Oct4 along with late naive pluripotency and germline-specific genes. Sequential activation of Tet1 further distinguishes two waves of global DNA demethylation, targeting distinct genomic features and largely uncoupled from transcriptional changes, with dynamics unique to iPSC reprogramming. Moreover, we demonstrate that loss of Tet1 is compatible with reprogramming towards full Oct4 gene activation, but generates iPSCs with aberrant DNA methylation, chromosomal instability during lineage priming and defective differentiation potential. Therefore, the transcriptional logic of Tet1 expression signals a deterministic epigenetic roadmap towards generation of high quality iPSCs.
Load More