ABSTRACT Accurate interaction with the environment relies on the integration of external information about the spatial layout of potential actions and knowledge of their costs and benefits. Previous studies have shown that when given a choice between voluntary reaching movements, humans tend to prefer actions with lower biomechanical costs. However, these studies primarily focused on decisions made before the onset of movement (“decide-then-act” scenarios), and it is not known to what extent their conclusions generalize to many real-life situations, in which decisions occur during ongoing actions (“decide-while-acting”). For example, one recent study found that biomechanical costs did not influence decisions to switch from a continuous manual tracking movement to a point-to-point movement, suggesting that biomechanical costs may be disregarded in decide-while-acting scenarios. To better understand this surprising result, we designed an experiment in which participants were faced with the decision between continuing to track a target moving along a straight path or changing paths to track a new target that gradually moved along a direction that deviated from the initial one. We manipulated tracking direction, angular deviation rate, and side of deviation, allowing us to compare scenarios where biomechanical costs favored either continuing or changing the path. Crucially, here the choice was always between two continuous tracking actions. Our results show that in this situation, decisions clearly took biomechanical costs into account. Thus, we conclude that biomechanics are not disregarded during decide-while-acting scenarios, but rather, that cost comparisons can only be made between similar types of actions. NEW & NOTEWORTHY In this study, we aim to shed light on how biomechanical factors influence decisions made during ongoing actions. Previous work suggested that decisions made during actions disregard biomechanical costs, in contrast to decisions made prior to movement. Our results challenge that proposal and suggest instead that the effect of biomechanical factors is dependent on the types of actions being compared (e.g., continuous tracking vs. point-to-point reaching). These findings contribute to our understanding of the dynamic interplay between biomechanical considerations and action choices during ongoing interactions with the environment.