JH
Jer-En Hsu
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
385
h-index:
4
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Seq-Scope: Submicrometer-resolution spatial transcriptomics for single cell and subcellular studies

Chun‐Seok Cho et al.Jan 27, 2021
Abstract Spatial barcoding technologies have the potential to reveal histological details of transcriptomic profiles; however, they are currently limited by their low resolution. Here we report Seq-Scope, a spatial barcoding technology with a resolution almost comparable to an optical microscope. Seq-Scope is based on a solid-phase amplification of randomly barcoded single-molecule oligonucleotides using an Illumina sequencing-by-synthesis platform. The resulting clusters annotated with spatial coordinates are processed to expose RNA-capture moiety. These RNA-capturing barcoded clusters define the pixels of Seq-Scope that are approximately 0.5-1 μm apart from each other. From tissue sections, Seq-Scope visualizes spatial transcriptome heterogeneity at multiple histological scales, including tissue zonation according to the portal-central (liver), crypt-surface (colon) and inflammation-fibrosis (injured liver) axes, cellular components including single cell types and subtypes, and subcellular architectures of nucleus, cytoplasm and mitochondria. Seq-scope is quick, straightforward and easy-to-implement, and makes spatial single cell analysis accessible to a wide group of biomedical researchers.
1
Citation13
0
Save
0

Seq-Scope Protocol: Repurposing Illumina Sequencing Flow Cells for High-Resolution Spatial Transcriptomics

Yongsung Kim et al.Apr 1, 2024
ABSTRACT Spatial transcriptomics (ST) technologies represent a significant advance in gene expression studies, aiming to profile the entire transcriptome from a single histological slide. These techniques are designed to overcome the constraints faced by traditional methods such as immunostaining and RNA in situ hybridization, which are capable of analyzing only a few target genes simultaneously. However, the application of ST in histopathological analysis is also limited by several factors, including low resolution, a limited range of genes, scalability issues, high cost, and the need for sophisticated equipment and complex methodologies. Seq-Scope—a recently developed novel technology—repurposes the Illumina sequencing platform for high-resolution, high-content spatial transcriptome analysis, thereby overcoming these limitations. Here we provide a detailed step-by-step protocol to implement Seq-Scope with an Illumina NovaSeq 6000 sequencing flow cell that allows for the profiling of multiple tissue sections in an area of 7 mm × 7 mm or larger. In addition to detailing how to prepare a frozen tissue section for both histological imaging and sequencing library preparation, we provide comprehensive instructions and a streamlined computational pipeline to integrate histological and transcriptomic data for high-resolution spatial analysis. This includes the use of conventional software tools for single cell and spatial analysis, as well as our recently developed segmentation-free method for analyzing spatial data at submicrometer resolution. Given its adaptability across various biological tissues, Seq-Scope establishes itself as an invaluable tool for researchers in molecular biology and histology. KEY POINTS The protocol outlines a method for repurposing an Illumina NovaSeq 6000 flow cell as a spatial transcriptomics array, enabling the generation of high-resolution spatial datasets. The protocol introduces a streamlined data analysis pipeline that produces a spatial digital gene expression matrix suitable for various single-cell and spatial transcriptome analysis methods. The protocol allows for the capture of histology images from the same tissue section subjected to spatial transcriptomics analysis and allows users to precisely align the transcriptome dataset with the histological image using fiducial marks engraved on the flow cell surface. Leveraging commonly available Illumina equipment, the protocol offers researchers ultra-high submicrometer resolution in spatial transcriptomics analysis with a comprehensive pipeline, rapid turnaround, cost efficiency, and versatility.
0
Citation1
0
Save
0

High-Resolution Spatial Transcriptomic Atlas of Mouse Soleus Muscle: Unveiling Single Cell and Subcellular Heterogeneity in Health and Denervation

Jer-En Hsu et al.Feb 29, 2024
Abstract Skeletal muscle is essential for both movement and metabolic processes, characterized by a complex and ordered structure. Despite its importance, a detailed spatial map of gene expression within muscle tissue has been challenging to achieve due to the limitations of existing technologies, which struggle to provide high-resolution views. In this study, we leverage the Seq-Scope technique, an innovative method that allows for the observation of the entire transcriptome at an unprecedented submicron spatial resolution. By applying this technique to the mouse soleus muscle, we analyze and compare the gene expression profiles in both healthy conditions and following denervation, a process that mimics aspects of muscle aging. Our approach reveals detailed characteristics of muscle fibers, other cell types present within the muscle, and specific subcellular structures such as the postsynaptic nuclei at neuromuscular junctions, hybrid muscle fibers, and areas of localized expression of genes responsive to muscle injury, along with their histological context. The findings of this research significantly enhance our understanding of the diversity within the muscle cell transcriptome and its variation in response to denervation, a key factor in the decline of muscle function with age. This breakthrough in spatial transcriptomics not only deepens our knowledge of muscle biology but also sets the stage for the development of new therapeutic strategies aimed at mitigating the effects of aging on muscle health, thereby offering a more comprehensive insight into the mechanisms of muscle maintenance and degeneration in the context of aging and disease.