BS
Benjamin Sinclair
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
8
h-index:
18
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Network-based atrophy modelling in the common epilepsies: a worldwide ENIGMA study

Sara Larivière et al.May 5, 2020
SUMMARY Epilepsy is increasingly conceptualized as a network disorder. In this cross-sectional mega-analysis, we integrated neuroimaging and connectome analysis to identify network associations with atrophy patterns in 1,021 adults with epilepsy compared to 1,564 healthy controls from 19 international sites. In temporal lobe epilepsy, areas of atrophy co-localized with highly interconnected cortical hub regions, whereas idiopathic generalized epilepsy showed preferential subcortical hub involvement. These morphological abnormalities were anchored to the connectivity profiles of distinct disease epicenters, pointing to temporo-limbic cortices in temporal lobe epilepsy and fronto-central cortices in idiopathic generalized epilepsy. Indices of progressive atrophy further revealed a strong influence of connectome architecture on disease progression in temporal lobe, but not idiopathic generalized, epilepsy. Our findings were reproduced across individual sites and single patients, and were robust across different analytical methods. Through worldwide collaboration in ENIGMA-Epilepsy, we provided novel insights into the macroscale features that shape the pathophysiology of common epilepsies.
0

A worldwide ENIGMA study on epilepsy-related gray and white matter compromise across the adult lifespan

Judy Chen et al.Mar 6, 2024
ABSTRACT Objectives Temporal lobe epilepsy (TLE) is commonly associated with mesiotemporal pathology and widespread alterations of grey and white matter structures. Evidence supports a progressive condition although the temporal evolution of TLE is poorly defined. This ENIGMA-Epilepsy study utilized multimodal magnetic resonance imaging (MRI) data to investigate structural alterations in TLE patients across the adult lifespan. We charted both grey and white matter changes and explored the covariance of age-related alterations in both compartments. Methods We studied 769 TLE patients and 885 healthy controls across an age range of 17-73 years, from multiple international sites. To assess potentially non-linear lifespan changes in TLE, we harmonized data and combined median split assessments with cross-sectional sliding window analyses of grey and white matter age-related changes. Covariance analyses examined the coupling of grey and white matter lifespan curves. Results In TLE, age was associated with a robust grey matter thickness/volume decline across a broad cortico-subcortical territory, extending beyond the mesiotemporal disease epicentre. White matter changes were also widespread across multiple tracts with peak effects in temporo-limbic fibers. While changes spanned the adult time window, changes accelerated in cortical thickness, subcortical volume, and fractional anisotropy (all decreased), and mean diffusivity (increased) after age 55 years. Covariance analyses revealed strong limbic associations between white matter tracts and subcortical structures with cortical regions. Conclusions This study highlights the profound impact of TLE on lifespan changes in grey and white matter structures, with an acceleration of aging-related processes in later decades of life. Our findings motivate future longitudinal studies across the lifespan and emphasize the importance of prompt diagnosis as well as intervention in patients.
37

Topographic Divergence of Atypical Cortical Asymmetry and Regional Atrophy Patterns in Temporal Lobe Epilepsy: A Worldwide ENIGMA Study

Bo‐yong Park et al.Apr 30, 2021
A bstract Temporal lobe epilepsy (TLE), a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter pathology in TLE relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multi-site ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 TLE patients and 1,418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in TLE, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity, and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of TLE-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of TLE and may inform future discovery and validation of complementary MRI biomarkers in TLE.
0

White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA Epilepsy study

Sean Hatton et al.Dec 20, 2019
The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analyzed from 1,069 non-epileptic controls and 1,249 patients: temporal lobe epilepsy with hippocampal sclerosis (N=599), temporal lobe epilepsy with normal MRI (N=275), genetic generalized epilepsy (N=182) and nonlesional extratemporal epilepsy (N=193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fiber tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at p<0.001). Across "all epilepsies" lower fractional anisotropy was observed in most fiber tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. Less robust effects were seen with mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Those with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced differences in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and in mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of microstructural abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibers in a large multicentre study of epilepsy. Overall, epilepsy patients showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding new insights into pathological substrates that may be used to guide future therapeutic and genetic studies.
1

Structural network alterations in focal and generalized epilepsy follow axes of epilepsy risk gene expression: An ENIGMA study

Sara Larivière et al.Oct 19, 2021
Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem co-expression patterns of epilepsy risk genes. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1,328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-genetic signatures could guide diagnosis, and ultimately, tailor therapeutic approaches to specific epilepsy syndromes.
0

Automated and Interpretable Detection of Hippocampal Sclerosis in Temporal Lobe Epilepsy: AIDHS

Mathilde Ripart et al.Nov 14, 2024
Objective Hippocampal sclerosis (HS), the most common pathology associated with temporal lobe epilepsy (TLE), is not always visible on magnetic resonance imaging (MRI), causing surgical delays and reduced postsurgical seizure‐freedom. We developed an open‐source software to characterize and localize HS to aid the presurgical evaluation of children and adults with suspected TLE. Methods We included a multicenter cohort of 365 participants (154 HS; 90 disease controls; 121 healthy controls). HippUnfold was used to extract morphological surface‐based features and volumes of the hippocampus from T1‐weighted MRI scans. We characterized pathological hippocampi in patients by comparing them to normative growth charts and analyzing within‐subject feature asymmetries. Feature asymmetry scores were used to train a logistic regression classifier to detect and lateralize HS. The classifier was validated on an independent multicenter cohort of 275 patients with HS and 161 healthy and disease controls. Results HS was characterized by decreased volume, thickness, and gyrification alongside increased mean and intrinsic curvature. The classifier detected 90.1% of unilateral HS patients and lateralized lesions in 97.4%. In patients with MRI‐negative histopathologically‐confirmed HS, the classifier detected 79.2% (19/24) and lateralized 91.7% (22/24). The model achieved similar performances on the independent cohort, demonstrating its ability to generalize to new data. Individual patient reports contextualize a patient's hippocampal features in relation to normative growth trajectories, visualise feature asymmetries, and report classifier predictions. Interpretation Automated and Interpretable Detection of Hippocampal Sclerosis (AID‐HS) is an open‐source pipeline for detecting and lateralizing HS and outputting clinically‐relevant reports. ANN NEUROL 2024
0

Automated segmentation of epilepsy surgical resection cavities: comparison of four methods to manual segmentation

Merran Courtney et al.May 14, 2024
Accurate resection cavity segmentation on MRI is important for neuroimaging research involving epilepsy surgical outcomes. Manual segmentation, the gold standard, is highly labour intensive. Automated pipelines are an efficient potential solution; however, most have been developed for use following temporal epilepsy surgery. Our aim was to compare the accuracy of four automated segmentation pipelines following surgical resection in a mixed cohort of subjects following temporal or extra temporal epilepsy surgery. We identified 4 open-source automated segmentation pipelines. Epic-CHOP and ResectVol utilise SPM-12 within MATLAB, while Resseg and Deep Resection utilise 3D U-net convolutional neural networks. We manually segmented the resection cavity of 50 consecutive subjects who underwent epilepsy surgery (30 temporal, 20 extratemporal). We calculated Dice similarity coefficient (DSC) for each algorithm compared to the manual segmentation. No algorithm identified all resection cavities. ResectVol (n=44, 88%) and Epic-CHOP (n=43, 86%) were able to detect more resection cavities than Resseg (n=22, 44%, P<0.001) and Deep Resection (n=21, 42%, P<0.001). The SPM-based pipelines (Epic-CHOP and ResectVol) performed better than the deep learning-based pipelines in the overall and extratemporal surgery cohorts, however there was no difference between methods in the temporal surgery cohort. These pipelines could be applied to machine learning studies of outcome prediction to improve efficiency in pre-processing data, however human quality control is still required.