AS
Anna Selmecki
Author with expertise in Diagnosis and Management of Fungal Infections
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(85% Open Access)
Cited by:
2,406
h-index:
25
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Polyploidy can drive rapid adaptation in yeast

Anna Selmecki et al.Mar 1, 2015
In vitro evolution experiments on haploid, diploid, and tetraploid yeast strains show that adaptation is faster in tetraploids, providing direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation. Polyploidization — where the chromosome number is more than double the normal or haploid number — is common in fungi, plants and animals, but its influence on evolution is unclear. This study describes bench-top evolution experiments on haploid, diploid and tetraploid asexual yeast strains showing that polyploidy can accelerate adaptation to growth on a poor carbon source, with tetraploids adapting the fastest. This go-faster evolution is driven by the acquisition of more and more beneficial mutations. Polyploidy can be unstable however, but aneuploidy, concerted chromosome loss and point mutations all provide substantial gains in fitness in this context. Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood1,2,3,4. Polyploidy, usually whole-genome duplication, is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations2,5,6,7. For example, in diverse cell types and organisms, immediately after a whole-genome duplication, newly formed polyploids missegregate chromosomes and undergo genetic instability8,9,10,11,12,13. The instability following whole-genome duplications is thought to provide adaptive mutations in microorganisms13,14 and can promote tumorigenesis in mammalian cells11,15. Polyploidy may also affect adaptation independently of beneficial mutations through ploidy-specific changes in cell physiology16. Here we perform in vitro evolution experiments to test directly whether polyploidy can accelerate evolutionary adaptation. Compared with haploids and diploids, tetraploids undergo significantly faster adaptation. Mathematical modelling suggests that rapid adaptation of tetraploids is driven by higher rates of beneficial mutations with stronger fitness effects, which is supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provide large fitness gains. We identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation.
0
Citation447
0
Save
0

A Mutation in Tac1p, a Transcription Factor Regulating CDR1 and CDR2, Is Coupled With Loss of Heterozygosity at Chromosome 5 to Mediate Antifungal Resistance in Candida albicans

Alix Coste et al.Feb 2, 2006
Abstract TAC1, a Candida albicans transcription factor situated near the mating-type locus on chromosome 5, is necessary for the upregulation of the ABC-transporter genes CDR1 and CDR2, which mediate azole resistance. We showed previously the existence of both wild-type and hyperactive TAC1 alleles. Wild-type alleles mediate upregulation of CDR1 and CDR2 upon exposure to inducers such as fluphenazine, while hyperactive alleles result in constitutive high expression of CDR1 and CDR2. Here we recovered TAC1 alleles from two pairs of matched azole-susceptible (DSY294; FH1: heterozygous at mating-type locus) and azole-resistant isolates (DSY296; FH3: homozygous at mating-type locus). Two different TAC1 wild-type alleles were recovered from DSY294 (TAC1-3 and TAC1-4) while a single hyperactive allele (TAC1-5) was isolated from DSY296. A single amino acid (aa) difference between TAC1-4 and TAC1-5 (Asn977 to Asp or N977D) was observed in a region corresponding to the predicted activation domain of Tac1p. Two TAC1 alleles were recovered from FH1 (TAC1-6 and TAC1-7) and a single hyperactive allele (TAC1-7) was recovered from FH3. The N977D change was seen in TAC1-7 in addition to several other aa differences. The importance of N977D in conferring hyperactivity to TAC1 was confirmed by site-directed mutagenesis. Both hyperactive alleles TAC1-5 and TAC1-7 were codominant with wild-type alleles and conferred hyperactive phenotypes only when homozygous. The mechanisms by which hyperactive alleles become homozygous was addressed by comparative genome hybridization and single nucleotide polymorphism arrays and indicated that loss of TAC1 heterozygosity can occur by recombination between portions of chromosome 5 or by chromosome 5 duplication.
0
Citation362
0
Save
0

Acquisition of Aneuploidy Provides Increased Fitness during the Evolution of Antifungal Drug Resistance

Anna Selmecki et al.Oct 29, 2009
The evolution of drug resistance is an important process that affects clinical outcomes. Resistance to fluconazole, the most widely used antifungal, is often associated with acquired aneuploidy. Here we provide a longitudinal study of the prevalence and dynamics of gross chromosomal rearrangements, including aneuploidy, in the presence and absence of fluconazole during a well-controlled in vitro evolution experiment using Candida albicans, the most prevalent human fungal pathogen. While no aneuploidy was detected in any of the no-drug control populations, in all fluconazole-treated populations analyzed an isochromosome 5L [i(5L)] appeared soon after drug exposure. This isochromosome was associated with increased fitness in the presence of drug and, over time, became fixed in independent populations. In two separate cases, larger supernumerary chromosomes composed of i(5L) attached to an intact chromosome or chromosome fragment formed during exposure to the drug. Other aneuploidies, particularly trisomies of the smaller chromosomes (Chr3-7), appeared throughout the evolution experiment, and the accumulation of multiple aneuploid chromosomes per cell coincided with the highest resistance to fluconazole. Unlike the case in many other organisms, some isolates carrying i(5L) exhibited improved fitness in the presence, as well as in the absence, of fluconazole. The early appearance of aneuploidy is consistent with a model in which C. albicans becomes more permissive of chromosome rearrangements and segregation defects in the presence of fluconazole.
0
Citation311
0
Save
0

Genotypic Evolution of Azole Resistance Mechanisms in Sequential Candida albicans Isolates

Alix Coste et al.Aug 11, 2007
ABSTRACT TAC1 (for transcriptional activator of CDR genes) is critical for the upregulation of the ABC transporters CDR1 and CDR2 , which mediate azole resistance in Candida albicans . While a wild-type TAC1 allele drives high expression of CDR1/2 in response to inducers, we showed previously that TAC1 can be hyperactive by a gain-of-function (GOF) point mutation responsible for constitutive high expression of CDR1/2 . High azole resistance levels are achieved when C. albicans carries hyperactive alleles only as a consequence of loss of heterozygosity (LOH) at the TAC1 locus on chromosome 5 (Chr 5), which is linked to the mating-type-like ( MTL ) locus. Both are located on the Chr 5 left arm along with ERG11 (target of azoles). In this work, five groups of related isolates containing azole-susceptible and -resistant strains were analyzed for the TAC1 and ERG11 alleles and for Chr 5 alterations. While recovered ERG11 alleles contained known mutations, 17 new TAC1 alleles were isolated, including 7 hyperactive alleles with five separate new GOF mutations. Single-nucleotide-polymorphism analysis of Chr 5 revealed that azole-resistant strains acquired TAC1 hyperactive alleles and, in most cases, ERG11 mutant alleles by LOH events not systematically including the MTL locus. TAC1 LOH resulted from mitotic recombination of the left arm of Chr 5, gene conversion within the TAC1 locus, or the loss and reduplication of the entire Chr 5. In one case, two independent TAC1 hyperactive alleles were acquired. Comparative genome hybridization and karyotype analysis revealed the presence of isochromosome 5L [i(5L)] in two azole-resistant strains. i(5L) leads to increased copy numbers of azole resistance genes present on the left arm of Chr 5, among them TAC1 and ERG11 . Our work shows that azole resistance was due not only to the presence of specific mutations in azole resistance genes (at least ERG11 and TAC1 ) but also to their increase in copy number by LOH and to the addition of extra Chr 5 copies. With the combination of these different modifications, sophisticated genotypes were obtained. The development of azole resistance in C. albicans is therefore a powerful instrument for generating genetic diversity.
0
Citation287
0
Save
0

Erg251 has complex and pleiotropic effects on azole susceptibility, filamentation, and stress response phenotypes

Xin Zhou et al.Mar 6, 2024
ABSTRACT Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans . Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Dysfunction of ERG251 resulted in transcriptional upregulation of the alternate sterol biosynthesis pathway and ZRT2 , a Zinc transporter. Notably, we determined that overexpression of ZRT2 is sufficient to increase azole tolerance in C. albicans . Our combined transcriptional and phenotypic analyses revealed the pleiotropic effects of ERG251 on stress responses including cell wall, osmotic and oxidative stress. Interestingly, while loss of either allele of ERG251 resulted in similar antifungal drug responses, we observed functional divergence in filamentation regulation between the two alleles of ERG251 ( ERG251-A and ERG251-B ) with ERG251-A exhibiting a dominant role in the SC5314 genetic background. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study provides extensive genetic, transcriptional and phenotypic analysis for the effects of ERG251 on drug susceptibility, fitness, filamentation and stress responses. AUTHOR SUMMARY Invasive infections caused by the fungal pathogen Candida albicans have high mortality rates (20-60%), even with antifungal drug treatment. Numerous mechanisms contributing to drug resistance have been characterized, but treatment failure remains a problem indicating that there are many facets that are not yet understood. The azole class of antifungals targets production of ergosterol, an essential component of fungal cell membranes. Here, we provide insights into the contributions of ERG251, a component of the ergosterol biosynthesis pathway, to increased growth in azoles as well as broad scale effects on stress responses filamentation and pathogenicity. One of the most striking results from our study is that even a single nucleotide change in one allele of ERG251 in diploid C. albicans can lead to azole tolerance. Tolerance, a distinct phenotype from resistance, is the ability of fungal cells to grow above the minimum inhibitory concentration in a drug concentration-independent manner. Tolerance frequently goes undetected in the clinic because it is not observable in standard assays. Strikingly, azole tolerance strains lacking one allele of ERG251 remained virulent in a mouse model of infection highlighting the potential for mutations in ERG251 to arise and contribute to treatment failure in patients.
0
Citation2
0
Save
0

Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes

Xin Zhou et al.Jul 30, 2024
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Homozygous deletions of ERG251 resulted in accumulation of ergosterol intermediates consistent with the fitness defect in rich medium. Dysfunction of ERG251, together with FLC exposure, resulted in decreased accumulation of the toxic sterol (14-ɑ-methylergosta-8,24(28)-dien-3β,6α-diol) and increased accumulation of non-toxic alternative sterols. The altered sterol composition of the ERG251 mutants had pleiotropic effects on transcription, filamentation, and stress responses including cell membrane, osmotic and oxidative stress. Interestingly, while dysfunction of ERG251 resulted in azole tolerance, it also led to transcriptional upregulation of ZRT2, a membrane-bound Zinc transporter, in the presence of FLC, and overexpression of ZRT2 is sufficient to increase azole tolerance in wild-type C. albicans. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study demonstrates that single allele dysfunction of ERG251 is a recurrent and effective mechanism of acquired azole tolerance. We propose that altered sterol composition resulting from ERG251 dysfunction mediates azole tolerance as well as pleiotropic effects on stress response, filamentation and virulence.
0
Citation1
0
Save
1

Genomic diversity across Candida auris clinical isolates shapes rapid development of antifungal resistance in vitro and in vivo

Laura Burrack et al.Mar 26, 2022
Abstract Antifungal drug resistance and tolerance poses a serious threat to global public health. In the human fungal pathogen, Candida auris , resistance to triazole, polyene, and echinocandin antifungals is rising, resulting in multidrug resistant isolates. Here, we use genome analysis and in vitro evolution of seventeen new clinical isolates of C. auris from clades I and IV to determine how quickly resistance mutations arise, the stability of resistance in the absence of drug, and the impact of genetic background on evolutionary trajectories. We evolved each isolate in the absence of drug as well as in low and high concentrations of fluconazole. In just three passages, we observed genomic and phenotypic changes including karyotype alterations, aneuploidy, acquisition of point mutations, and increases in MIC values within the populations. Fluconazole resistance was stable in the absence of drug, indicating little to no fitness cost associated with resistance. Importantly, two isolates substantially increased fluconazole resistance to ≥256µg/ml fluconazole. Multiple evolutionary pathways and mechanisms to increase fluconazole resistance occurred simultaneously within the same population. Strikingly, the sub-telomeric regions of C. auris were highly dynamic as deletion of multiple genes near the sub-telomeres occurred during the three passages in several populations. Finally, we discovered a mutator phenotype in a clinical isolate of C. auris . This isolate had elevated mutation rates compared to other isolates and acquired substantial resistance during evolution in vitro and in vivo supporting that the genetic background of clinical isolates can have a significant effect on evolutionary potential. Importance Drug resistant Candida auris infections are recognized by the CDC as an urgent threat. Here, we obtained and characterized a set of clinical isolates of C. auris including multiple isolates from the same patient. To understand how drug resistance arises, we evolved these isolates and found that resistance to fluconazole, the most commonly prescribed antifungal, can occur rapidly and that there are multiple pathways to resistance. During our experiment, resistance was gained, but it was not lost, even in the absence of drug. We also found that some C. auris isolates have higher mutation rates than others and are primed to acquire antifungal resistance mutations. Furthermore, we found that multidrug resistance can evolve within a single patient. Overall, our results highlight the high stability and high rates of acquisition of antifungal resistance of C. auris that allow evolution of pan-resistant, transmissible isolates in the clinic.
Load More