IG
Ilaria Granata
Author with expertise in Notch Signaling Pathway in Development and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
5
h-index:
19
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Defining the signalling determinants of a posterior ventral spinal cord identity in human neuromesodermal progenitor derivatives

Matthew Wind et al.Jun 24, 2020
+8
I
A
M
Abstract The anteroposterior axial identity of motor neurons (MNs) determines their functionality and vulnerability to neurodegeneration. Thus it is a critical parameter in the design of strategies aiming to produce MNs from human pluripotent stem cells (hPSCs) for regenerative medicine and disease modelling applications. However, the in vitro generation of posterior spinal cord MNs has been challenging. Although the induction of cells resembling neuromesodermal progenitors (NMPs), the bona fide precursors of the mammalian spinal cord, offers a promising solution, the progressive specification of posterior MNs from these cells is not well-defined. Here we determine the signals guiding the transition of human NMP-like cells toward posterior ventral spinal cord neurectoderm. We show that combined WNT-FGF activities drive a posterior dorsal early neural state while suppression of TGFβ-BMP signalling pathways, combined with SHH stimulation, promotes a ventral identity. Based on these results, we define an optimised protocol for the generation of posterior MNs that can efficiently integrate within the neural tube of chick embryos. We expect that our findings will facilitate the functional comparison of hPSC-derived spinal cord cells of distinct axial identities.
0
Citation3
0
Save
27

Early anteroposterior regionalisation of human neural crest is shaped by a pro-mesodermal factor

Antigoni Gogolou et al.Sep 24, 2021
+11
I
C
A
Abstract The neural crest (NC) is an important multipotent embryonic cell population and its impaired specification leads to various developmental defects, often in an anteroposterior (A-P) axial level-specific manner. The mechanisms underlying the correct A-P regionalisation of human NC cells remain elusive. Recent studies have indicated that trunk NC cells, the presumed precursors of the childhood tumour neuroblastoma, are derived from neuromesodermal-potent progenitors of the postcranial body (NMPs). Here we employ human embryonic stem cell differentiation to define how NMP-derived NC cells acquire a posterior axial identity. We show that TBXT, a pro-mesodermal transcription factor, mediates early posterior NC regionalisation together with WNT signalling effectors. This occurs by TBXT-driven chromatin remodelling via its binding in key enhancers within HOX gene clusters and other posterior regulator-associated loci. In contrast, posteriorisation of NMP-derived spinal cord cells is TBXT/WNT-independent and takes place under the influence of FGF signalling. Our work reveals a previously unknown role of TBXT in influencing posterior NC fate and points to the existence of temporally discrete, cell type-dependent modes of posterior axial identity control.
27
Citation2
0
Save
0

Human axial progenitors generate trunk neural crest cells

Thomas Frith et al.Feb 27, 2018
+13
E
I
T
The neural crest (NC) is a multipotent embryonic cell population generating distinct cell types in an axial position-dependent manner. The production of NC cells from human pluripotent stem cells (hPSCs) is a valuable approach to study human NC biology. However, the origin of human trunk NC remains undefined and therefore current in vitro differentiation strategies induce only a modest yield of trunk NC cells. Here we show that hPSC-derived axial progenitors, the posteriorly-located drivers of embryonic axis elongation, give rise to trunk NC cells and their derivatives. Moreover, we define the molecular signatures associated with the emergence of human NC cells of distinct axial identities in vitro. Collectively, our findings indicate that there are two routes toward a human post-cranial NC state: the birth of cardiac and vagal NC is facilitated by retinoic acid-induced posteriorisation of an anterior precursor whereas trunk NC arises within a pool of posterior axial progenitors.
0

GRASPS: a simple-to-operate translatome technology reveals omics-hidden disease-associated pathways in TDP-43-related amyotrophic lateral sclerosis

Ya-Hui Lin et al.Mar 8, 2024
+16
M
C
Y
Abstract Transcriptomes and translatomes measure genome-wide levels of total and ribosome-associated RNAs. A few hundred translatomes were reported over >250,000 transcriptomes highlighting the challenges of identifying translating RNAs. Here, we used a human isogenic inducible model of TDP-43-linked amyotrophic lateral sclerosis, which exhibits altered expression of thousands of transcripts, as a paradigm for the direct comparison of whole-cell, cytoplasmic and translating RNAs, showing broad uncoupling and poor correlation between disease-altered transcripts. Moreover, based on precipitation of endogenous ribosomes, we developed GRASPS (Genome-wide RNA Analysis of Stalled Protein Synthesis), a simple-to-operate translatome technology. Remarkably, GRASPS identified three times more differentially-expressed transcripts with higher fold changes and statistical significance, providing unprecedented opportunities for data modeling at stringent filtering and discovery of previously omics-missed disease-relevant pathways, which functionally map on dense gene regulatory networks of protein-protein interactions. Based on its simplicity and robustness, GRASPS is widely applicable across disciplines in the biotechnologies and biomedical sciences.
0

HELP: A computational framework for labelling and predicting human context-specific essential genes

Ilaria Granata et al.Apr 20, 2024
+2
M
L
I
Machine learning-based approaches are particularly suitable for identifying essential genes as they allow the generation of predictive models trained on features from multi-source data. Gene essentiality is neither binary nor static but determined by the context. The databases for essential gene annotation do not permit the personalisation of the context, and their update can be slower than the publication of new experimental data. We propose HELP (Human Gene Essentiality Labelling & Prediction), a computational framework for labelling and predicting essential genes. Its double scope allows for identifying genes based on dependency or not on experimental data. The effectiveness of the labelling method was demonstrated by comparing it with other approaches in overlapping the state-of-the-art EG annotations, where HELP demonstrated the best compromise between false and true positive rates. The gene attributes, including multi-omics and network embedding features, lead to high-performance prediction of EGs while confirming the existence of essentiality nuances.
0

Safety and efficacy of C9ORF72-repeat RNA nuclear export inhibition in amyotrophic lateral sclerosis

Lydia Castelli et al.Apr 12, 2021
+13
C
L
L
Abstract Background Loss of motor neurons in amyotrophic lateral sclerosis (ALS) leads to progressive paralysis and death. Dysregulation of thousands of RNA molecules with roles in multiple cellular pathways hinders the identification of ALS-causing alterations over downstream changes secondary to the neurodegenerative process. How many and which of these pathological gene expression changes require therapeutic normalisation remains a fundamental question. Methods Here, we investigated genome-wide RNA changes in C9ORF72-ALS patient-derived neurons and Drosophila , as well as upon neuroprotection taking advantage of our gene therapy approach which specifically inhibits the SRSF1-dependent nuclear export of pathological C9ORF72 -repeat transcripts. This is a critical study to evaluate (i) the overall safety and efficacy of the partial depletion of SRSF1, a member of a protein family involved itself in gene expression, and (ii) a unique opportunity to identify neuroprotective RNA changes. Results Our study demonstrates that manipulation of 362 transcripts out of 2,257 pathological changes in C9ORF72-ALS patient-derived neurons is sufficient to confer neuroprotection upon partial depletion of SRSF1. In particular, expression of 90 disease-altered transcripts is fully reverted upon neuroprotection leading to the characterisation of a human C9ORF72-ALS disease-modifying gene expression signature. These findings were further investigated in vivo in diseased and neuroprotected Drosophila transcriptomes, highlighting a list of 21 neuroprotective changes conserved with 16 human orthologues in patient-derived neurons. We also functionally validated the high therapeutic potential of one of these disease-modifying transcripts, demonstrating that inhibition of ALS-upregulated human KCNN1-3 ( Drosophila SK) voltage-gated potassium channel orthologs mitigates degeneration of human motor neurons as well as Drosophila motor deficits. Conclusions Strikingly, manipulating the expression levels of a small proportion of RNAs is sufficient to induce a therapeutic effect, further indicating that the SRSF1-targeted gene therapy approach is safe in the above preclinical models as it does not disrupt globally gene expression. The efficacy of this intervention is also validated at genome-wide level with therapeutically-induced RNA changes involved in the vast majority of biological processes affected in C9ORF72-ALS. Finally, the identification of a characteristic signature with key RNA changes modified in both the disease state and upon neuroprotection also provides potential new therapeutic targets and biomarkers.