EB
Elizabeth Burgener
Author with expertise in Ecology and Evolution of Viruses in Ecosystems
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
1
h-index:
14
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
23

The Impact of Pf Bacteriophages on the Fitness ofPseudomonas aeruginosa; A Mathematical Modeling Approach

Julie Pourtois et al.Aug 31, 2020
+4
Q
M
J
Abstract Pseudomonas aeruginosa ( Pa ) is a major bacterial pathogen responsible for chronic lung infections in cystic fibrosis patients. Recent work by ourselves and others has implicated Pf bacteriophages, non-lytic filamentous viruses produced by Pa , in the chronicity and severity of Pa infections. Pf phages act as structural elements in Pa biofilms and sequester aerosolized antibiotics, thereby contributing to antibiotic tolerance. Consistent with a selective advantage in this setting, the prevalence of Pf+ bacteria increases over time in these patients. However, the production of Pf phages comes at a metabolic cost to bacteria, such that Pf+ strains grow more slowly than Pf- strains in vitro. Here, we use a mathematical model to investigate how these competing pressures might influence the relative abundance of Pf+ versus Pf- strains in different settings. Our model predicts that Pf+ strains of Pa can only outcompete Pf- strains if the benefits of phage production falls solely onto Pf+ strains and not onto the overall bacterial community in the lung. Further, phage production only leads to a net positive gain in fitness at antibiotic concentrations slightly above the minimum inhibitory concentration (i.e., concentrations for which the benefits of antibiotic sequestration outweigh the metabolic cost of phage production), but which are not lethal for Pf+ strains. As a result, our model predicts that frequent administration of intermediate doses of antibiotics with low decay rates favors Pf+ over Pf- strains. These models inform our understanding of the ecology of Pf phages and suggest potential treatment strategies for Pf+ Pa infections. Importance Filamentous phages are a frontier in bacterial pathogenesis, but the impact of these phages on bacterial fitness is unclear. In particular, Pf phages produced by Pa promote antibiotic tolerance but are metabolically expensive to produce, suggesting that competing pressures may influence the prevalence of Pf+ versus Pf- strains of Pa in different settings. Our results identify conditions likely to favor Pf+ strains and thus antibiotic tolerance. This study contributes to a better understanding of the unique ecology of filamentous phages and may facilitate improved treatment strategies for combating antibiotic tolerance.
23
Citation1
0
Save
0

Filamentous Bacteriophage Delay Healing of Pseudomonas-Infected Wounds

Michelle Bach et al.Mar 11, 2020
+21
N
T
M
We have identified a novel role for filamentous bacteriophage in the delayed healing associated with chronic Pseudomonas aeruginosa (Pa) wound infections. In a mouse model of chronic Pa-infected wounds, Pf, a filamentous phage produced by Pa, impaired keratinocyte migration, prevented wound re-epithelialization, and delayed healing in both the absence and presence of live bacteria. Mechanistically, the immune response to Pf phage produces soluble factors that impair keratinocyte migration and delay wound re-epithelialization. In a prospective cohort study of 113 human patients, Pa was detected in 36 patients and 25 of these (69%) were positive for Pf phage. Pf(+) wounds were significantly older and more likely to increase in size over time than Pf(-) wounds. Together, these data implicate Pf in the delayed wound healing associated with Pa infection. We propose that Pf phage may have potential as a biomarker and therapeutic target for delayed wound healing.
0

Pf bacteriophages hinder sputum antibiotic diffusion via electrostatic binding

Qingquan Chen et al.May 31, 2024
+11
T
P
Q
Despite great progress in the field, chronic Pseudomonas aeruginosa ( Pa ) infections remain a major cause of mortality in patients with cystic fibrosis (pwCF), necessitating treatment with antibiotics. Pf is a filamentous bacteriophage produced by Pa and acts as a structural element in Pa biofilms. Pf presence has been associated with antibiotic resistance and poor outcomes in pwCF, although the underlying mechanisms are unclear. We have investigated how Pf and sputum biopolymers impede antibiotic diffusion using pwCF sputum and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf in sputum reduces the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches.
0

Methods for Extraction and Detection of Bacteriophage DNA from the Sputum of Patients with Cystic Fibrosis

Elizabeth Burgener et al.Mar 12, 2020
+4
M
P
E
There is increasing interest in the pulmonary microbiome's bacterial and viral communities, particularly in the context of chronic airway infections in cystic fibrosis (CF). However, the isolation of microbial DNA from the sputum from patients with CF is technically challenging and the optimal protocols for the analysis of viral species, including bacteriophage, from clinical samples remains challenging. Here, we evaluate a set of methods developed for processing and analyzing sputum from patients with CF with a particular emphasis on detecting bacteriophage viron-derived nucleic acid. We evaluate the impact of bead-beating, deoxyribonuclease digestion, and heating steps in these protocols focusing on the quantitative assessment of Pseudomonas aeruginosa and Pf bacteriophage in sputum as a proof of concept. Based on these comparative data, we describe an optimized protocol for processing sputum from patients with CF and isolating DNA for PCR or sequencing-based studies. These studies will facilitate future assessments of bacteriophage and bacteria in sputum from patients with CF.
0

Pf bacteriophages hinder sputum antibiotic diffusion via electrostatic binding

Qingquan Chen et al.Mar 10, 2024
+13
S
A
Q
Abstract Despite great progress in the field, chronic Pseudomonas aeruginosa ( Pa ) infections remain a major cause of morbidity and mortality in patients with cystic fibrosis, necessitating treatment with inhaled antibiotics. Pf phage is a filamentous bacteriophage produced by Pa that has been reported to act as a structural element in Pa biofilms. Pf presence has been associated with resistance to antibiotics and poor outcomes in cystic fibrosis, though the underlying mechanisms are unclear. Here, we have investigated how Pf phages and sputum biopolymers impede antibiotic diffusion using human sputum samples and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf phages and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf phages in sputum reduce the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf phages and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches. Teaser Pf phages and sputum polymers reduce antibiotic diffusion via electrostatic interactions and liquid crystal formation.
0

A Blueprint for Broadly Effective Bacteriophage Therapy Against Bacterial Infections

Minyoung Kim et al.Apr 21, 2024
+6
A
Q
M
Summary Bacteriophage therapy is a tantalizing therapeutic option for anti-microbial resistant bacterial infections but is currently limited to personalized therapy due to the narrow host range of individual phages. Theoretically, cocktails incorporating numerous phages targeting all possible bacterial receptor specificities could confer broad host range. Practically, however, extensive bacterial diversity and the complexity of phage-phage interactions precludes this approach. Here, using screening protocols for identifying “complementarity groups” of phages using non-redundant receptors, we generate effective, broad-range phage cocktails that prevent emergence of bacterial resistance. Further, phage complementarity groups have characteristic interactions with particular antibiotic classes, making it possible to predict phage-antibiotic as well as phage-phage interactions. Using this strategy, we generate three phage-antibiotic cocktails, each effective against >96% of 153 Pseudomonas aeruginosa clinical isolates, including when used in biofilm cultures and wound infections in vivo . We similarly develop effective Staphylococcus aureus phage-antibiotic cocktails and demonstrate the utility of combined cocktails against polymicrobial (mixed P. aeruginosa/S. aureus ) cultures, highlighting the broad applicability of this approach. These studies establish a blueprint for effective, broad-spectrum phage therapy cocktails and enable off-the-shelf phage-based therapeutics for antimicrobial-resistant bacterial infections.
7

Using Genomic Tools to Predict Antimicrobial Resistance and Markers in Clinical Bacterial Samples

Tony Chang et al.Jun 3, 2024
+5
N
J
T
Abstract Antimicrobial resistance (AMR) poses a critical threat to hospital infections particularly in the context of hospital-acquired infections (HAIs). This study leverages genomic tools to predict AMR and identify resistance markers in clinical bacterial samples associated with HAIs. Using comprehensive genomic and phenotypic analyses, we evaluated the genetic profiles of Pseudomonas aeruginosa and Staphylococcus aureus to uncover resistance mechanisms. Our results demonstrate that genomic tools, such as CARD-RGI and the Solu platform, can accurately identify resistance genes and predict AMR phenotypes in nosocomial pathogens. These findings underscore the potential of integrating genomic approaches into clinical practice to enhance the management of resistant infections in hospital settings and inform the development of novel antimicrobial strategies. Importance This study investigates the impact of prophages on antibiotic resistance in two clinically significant bacteria, Pseudomonas aeruginosa and Staphylococcus aureus. Understanding how prophages influence resistance mechanisms in these pathogens is crucial, as Pseudomonas aeruginosa is known for its role in chronic infections in cystic fibrosis patients, while Staphylococcus aureus, including MRSA strains, is a leading cause of hospital-acquired infections. By exploring the relationship between prophage presence and resistance, this research provides insights that could inform the development of more effective treatment strategies and enhance our ability to combat antibiotic-resistant infections, ultimately improving patient outcomes and public health.
7
2.5
2
Save
0

Targeted deletion of Pf prophages from diverse Pseudomonas aeruginosa isolates impacts quorum sensing and virulence traits

Amelia Schmidt et al.Jan 1, 2023
+7
J
C
A
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that commonly causes medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages that infect P. aeruginosa impact numerous bacterial virulence phenotypes. Most work on Pf phages has focused on strain Pf4 and its host P. aeruginosa PAO1. Expanding from Pf4 and PAO1, this study explores diverse Pf strains infecting P. aeruginosa clinical isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene, pflM (PA0718), that enables the effective elimination of Pf prophages from diverse P. aeruginosa hosts. This study also assesses the effects different Pf phages have on host quorum sensing, biofilm formation, virulence factor production, and virulence. Collectively, this research not only introduces a valuable tool for Pf prophage elimination from diverse P. aeruginosa isolates, but also advances our understanding of the complex relationship between P. aeruginosa and filamentous Pf phages.
30

A filamentous phage triggers antiviral responses in cystic fibrosis basal airway epithelial cells

Medeea Popescu et al.Sep 28, 2022
+5
E
N
M
Abstract Basal airway epithelial cells are a multipotent stem cell population which gives rise to several airway cell types. Basal cells are known to be critical to airway epithelium homeostasis and repair, and altered basal cell phenotypes have been reported in cystic fibrosis and idiopathic pulmonary fibrosis. However, very little is known about how basal cells respond to stimuli in the cystic fibrosis airway environment. Cystic fibrosis patients experience chronic infection with Pseudomonas aeruginosa and contain both high quantities of lipopolysaccharide (LPS) as well as the filamentous bacteriophage Pf produced by biofilm-state P. aeruginosa in the airway. In this study, we sought to investigate the transcriptional responses of human basal cells from both healthy controls and patients with cystic fibrosis to LPS and Pf phage. Basal cells from wildtype and cystic fibrosis donors were cultured in vitro and exposed to LPS and/or Pf phage, followed by single-cell sequencing on the 10x platform. We report that basal cells show strong antiviral responses and neutrophil chemokine production in response to Pf phage. We validate these findings in additional donors by qRT-PCR and show that Pf phage is internalized by basal cells. We also show that Pf decreases basal cell migration and proliferation. We demonstrate that Pf phage, a bacteria-infecting virus which does not replicate in mammalian cells, is taken up by basal cells and activates immune responses. Further studies are needed to determine the impact of this antiviral response to bacterial clearance. Author Summary When we experience a lung infection or injury, the stem cells of the airway—called basal epithelial cells—are crucial for healing the affected tissue. Basal cells proliferate and migrate to close gaps in the epithelium and replace injured and dead cells. We are also learning that basal cells can directly contribute to the immune response against lung pathogens, although little is understood about how basal cells sense viruses and bacteria, and what molecules they secrete in response. In our work, we sought to investigate the role that basal cells play in the course of an infection with the common human pathogen Pseudomonas aeruginosa . We stimulated basal cells with lipopolysaccharide (LPS), a potent immunogen produced by Pseudomonas , as well as the Pseudomonas- infecting virus Pf4. We have previously shown that Pf4, which is produced in high amounts by lung-infecting Pseudomonas, affects the immune response to this bacterium. In our work here, we show that Pf4 is recognized as a virus by basal cells and changes the transcriptional response to LPS, derailing the antibacterial immune response to Pseudomonas . These findings raise the question of whether other bacteria-infecting viruses alter immune responses, and how these viruses interact with other airway cells.