AB
Annelise Barron
Author with expertise in Antimicrobial Peptides in Host Defense and Therapy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
1,433
h-index:
56
/
i10-index:
165
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides

Nathaniel Chongsiriwatana et al.Feb 20, 2008
Antimicrobial peptides (AMPs) and their mimics are emerging as promising antibiotic agents. We present a library of “ampetoids” (antimicrobial peptoid oligomers) with helical structures and biomimetic sequences, several members of which have low-micromolar antimicrobial activities, similar to cationic AMPs like pexiganan. Broad-spectrum activity against six clinically relevant BSL2 pathogens is also shown. This comprehensive structure–activity relationship study, including circular dichroism spectroscopy, minimum inhibitory concentration assays, hemolysis and mammalian cell toxicity studies, and specular x-ray reflectivity measurements shows that the in vitro activities of ampetoids are strikingly similar to those of AMPs themselves, suggesting a strong mechanistic analogy. The ampetoids' antibacterial activity, coupled with their low cytotoxicity against mammalian cells, make them a promising class of antimicrobials for biomedical applications. Peptoids are biostable, with a protease-resistant N -substituted glycine backbone, and their sequences are highly tunable, because an extensive diversity of side chains can be incorporated via facile solid-phase synthesis. Our findings add to the growing evidence that nonnatural foldamers will emerge as an important class of therapeutics.
0

New Peptidomimetic Polymers for Antifouling Surfaces

Andrea Statz et al.May 13, 2005
Exposure of therapeutic and diagnostic medical devices to biological fluids is often accompanied by interfacial adsorption of proteins, cells, and microorganisms. Biofouling of surfaces can lead to compromised device performance or increased cost and in some cases may be life-threatening to the patient. Although numerous antifouling polymer coatings have enjoyed short-term success in preventing protein and cell adsorption on surfaces, none have proven ideal for conferring long-term biofouling resistance. Here we describe a new biomimetic antifouling N-substituted glycine polymer (peptoid) containing a C-terminal peptide anchor derived from residues found in mussel adhesive proteins for robust attachment of the polymer onto surfaces. The methoxyethyl side chain of the peptoid portion of the polymer was chosen for its chemical resemblance to the repeat unit of the known antifouling polymer poly(ethylene glycol) (PEG), whereas the composition of the 5-mer anchoring peptide was chosen to directly mimic the DOPA- and Lys-rich sequence of a known mussel adhesive protein. Surfaces modified with this biomimetic peptide−peptoid conjugate exhibited dramatic reduction of serum protein adsorption and resistance to mammalian cell attachment for over 5 months in an in vitro assay. These new synthetic peptide based antifouling polymers may provide long-term control of surface biofouling in the physiologic, marine, and industrial environments.
0
Paper
Citation393
0
Save
0

Pf bacteriophages hinder sputum antibiotic diffusion via electrostatic binding

Qingquan Chen et al.Mar 10, 2024
Abstract Despite great progress in the field, chronic Pseudomonas aeruginosa ( Pa ) infections remain a major cause of morbidity and mortality in patients with cystic fibrosis, necessitating treatment with inhaled antibiotics. Pf phage is a filamentous bacteriophage produced by Pa that has been reported to act as a structural element in Pa biofilms. Pf presence has been associated with resistance to antibiotics and poor outcomes in cystic fibrosis, though the underlying mechanisms are unclear. Here, we have investigated how Pf phages and sputum biopolymers impede antibiotic diffusion using human sputum samples and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf phages and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf phages in sputum reduce the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf phages and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches. Teaser Pf phages and sputum polymers reduce antibiotic diffusion via electrostatic interactions and liquid crystal formation.
0

Peptide-mimetic treatment ofPseudomonas aeruginosain a mouse model of respiratory infection

Madeleine Moule et al.Oct 30, 2023
Abstract The rise of drug resistance has become a global crisis, with >1 million deaths due to resistant bacterial infections each year. Pseudomonas aeruginosa, in particular, remains a serious problem with limited solutions due to complex resistance mechanisms that now lead to more than 32,000 multidrug-resistant (MDR) infections and over 2,000 deaths annually. While the emergence of resistant bacteria has become concerningly common, identification of useful new drug classes has been limited over the past 40+ years. We found that a potential novel therapeutic, the peptide-mimetic TM5, is effective at killing P. aeruginosa and displays sufficiently low toxicity for mammalian cells to allow for use in treatment of infections. Interestingly, TM5 kills P. aeruginosa more rapidly than traditional antibiotics, within 30-60 minutes in vitro , and is effective against a range of clinical isolates. In vivo , TM5 significantly reduced bacterial load in the lungs within 24 hours compared to untreated mice and demonstrated few adverse effects. Taken together, these observations suggest that TM5 shows promise as an alternative therapy for MDR P. aeruginosa respiratory infections.
0

Peptide-mimetic treatment of Pseudomonas aeruginosa in a mouse model of respiratory infection

Madeleine Moule et al.Aug 22, 2024
The rise of drug resistance has become a global crisis, with >1 million deaths due to resistant bacterial infections each year. Pseudomonas aeruginosa, in particular, remains a serious problem with limited solutions due to complex resistance mechanisms that now lead to more than 32,000 multidrug-resistant (MDR) infections and over 2000 deaths in the U.S. annually. While the emergence of resistant bacteria has become ominously common, identification of useful new drug classes has been limited over the past over 40 years. We found that a potential novel therapeutic, the peptide-mimetic TM5, is effective at killing P. aeruginosa and displays sufficiently low toxicity in mammalian cells to allow for use in treatment of infections. Interestingly, TM5 kills P. aeruginosa more rapidly than traditional antibiotics, within 30–60 min in vitro, and is effective against a range of clinical isolates, including extensively drug resistant strains. In vivo, TM5 significantly reduced bacterial load in the lungs within 24 h compared to untreated mice and demonstrated few adverse effects. Taken together, these observations suggest that TM5 shows promise as an alternative therapy for MDR P. aeruginosa respiratory infections. Use of peptoids to treat a mouse model of respiratory infection for Pseudomonas aeruginosa. Additionally, this study determined the cytotoxic effect of peptoids on several types of respiratory models when compared to traditional cell culture models.