Single-particle electron microscopy and hydrogen–deuterium exchange mass spectrometry are used to characterize the structure and dynamics of a G-protein-coupled receptor–arrestin complex. Much has been learned about the structure of G-protein-coupled receptors (GCPRs) over the past seven years, but we still don't know what an activated GPCR looks like when it is bound to a β-arrestin. (Arrestins are cellular mediators with a broad range of functions, many of them involving GPCRs.) In this study the authors use single-particle electron microscopy and hydrogen–deuterium exchange mass spectrometry to characterize the structure and dynamics of a GPCR–arrestin complex. Their data support a 'biphasic' mechanism, in which the arrestin initially interacts with the phosphorylated carboxy terminus of the GPCR before re-arranging to more fully engage the membrane protein in a signalling-competent conformation. G-protein-coupled receptors (GPCRs) are critically regulated by β-arrestins, which not only desensitize G-protein signalling but also initiate a G-protein-independent wave of signalling1,2,3,4,5. A recent surge of structural data on a number of GPCRs, including the β2 adrenergic receptor (β2AR)–G-protein complex, has provided novel insights into the structural basis of receptor activation6,7,8,9,10,11. However, complementary information has been lacking on the recruitment of β-arrestins to activated GPCRs, primarily owing to challenges in obtaining stable receptor–β-arrestin complexes for structural studies. Here we devised a strategy for forming and purifying a functional human β2AR–β-arrestin-1 complex that allowed us to visualize its architecture by single-particle negative-stain electron microscopy and to characterize the interactions between β2AR and β-arrestin 1 using hydrogen–deuterium exchange mass spectrometry (HDX-MS) and chemical crosslinking. Electron microscopy two-dimensional averages and three-dimensional reconstructions reveal bimodal binding of β-arrestin 1 to the β2AR, involving two separate sets of interactions, one with the phosphorylated carboxy terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of crosslinked residues suggest engagement of the finger loop of β-arrestin 1 with the seven-transmembrane core of the receptor. In contrast, focal areas of raised HDX levels indicate regions of increased dynamics in both the N and C domains of β-arrestin 1 when coupled to the β2AR. A molecular model of the β2AR–β-arrestin signalling complex was made by docking activated β-arrestin 1 and β2AR crystal structures into the electron microscopy map densities with constraints provided by HDX-MS and crosslinking, allowing us to obtain valuable insights into the overall architecture of a receptor–arrestin complex. The dynamic and structural information presented here provides a framework for better understanding the basis of GPCR regulation by arrestins.