DS
Dániel Süveges
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(45% Open Access)
Cited by:
4,795
h-index:
19
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019

Annalisa Buniello et al.Oct 25, 2018
The GWAS Catalog delivers a high-quality curated collection of all published genome-wide association studies enabling investigations to identify causal variants, understand disease mechanisms, and establish targets for novel therapies. The scope of the Catalog has also expanded to targeted and exome arrays with 1000 new associations added for these technologies. As of September 2018, the Catalog contains 5687 GWAS comprising 71673 variant-trait associations from 3567 publications. New content includes 284 full P-value summary statistics datasets for genome-wide and new targeted array studies, representing 6 × 109 individual variant-trait statistics. In the last 12 months, the Catalog's user interface was accessed by ∼90000 unique users who viewed >1 million pages. We have improved data access with the release of a new RESTful API to support high-throughput programmatic access, an improved web interface and a new summary statistics database. Summary statistics provision is supported by a new format proposed as a community standard for summary statistics data representation. This format was derived from our experience in standardizing heterogeneous submissions, mapping formats and in harmonizing content. Availability: https://www.ebi.ac.uk/gwas/.
0
Citation3,655
0
Save
0

Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data

Ioanna Tachmazidou et al.Jan 21, 2019
Osteoarthritis is the most common musculoskeletal disease and the leading cause of disability globally. Here, we performed a genome-wide association study for osteoarthritis (77,052 cases and 378,169 controls), analyzing four phenotypes: knee osteoarthritis, hip osteoarthritis, knee and/or hip osteoarthritis, and any osteoarthritis. We discovered 64 signals, 52 of them novel, more than doubling the number of established disease loci. Six signals fine-mapped to a single variant. We identified putative effector genes by integrating expression quantitative trait loci (eQTL) colocalization, fine-mapping, and human rare-disease, animal-model, and osteoarthritis tissue expression data. We found enrichment for genes underlying monogenic forms of bone development diseases, and for the collagen formation and extracellular matrix organization biological pathways. Ten of the likely effector genes, including TGFB1 (transforming growth factor beta 1), FGF18 (fibroblast growth factor 18), CTSK (cathepsin K), and IL11 (interleukin 11), have therapeutics approved or in clinical trials, with mechanisms of action supportive of evaluation for efficacy in osteoarthritis.
0
Citation407
0
Save
0

Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics

Maya Ghoussaini et al.Sep 17, 2020
Abstract Open Targets Genetics (https://genetics.opentargets.org) is an open-access integrative resource that aggregates human GWAS and functional genomics data including gene expression, protein abundance, chromatin interaction and conformation data from a wide range of cell types and tissues to make robust connections between GWAS-associated loci, variants and likely causal genes. This enables systematic identification and prioritisation of likely causal variants and genes across all published trait-associated loci. In this paper, we describe the public resources we aggregate, the technology and analyses we use, and the functionality that the portal offers. Open Targets Genetics can be searched by variant, gene or study/phenotype. It offers tools that enable users to prioritise causal variants and genes at disease-associated loci and access systematic cross-disease and disease-molecular trait colocalization analysis across 92 cell types and tissues including the eQTL Catalogue. Data visualizations such as Manhattan-like plots, regional plots, credible sets overlap between studies and PheWAS plots enable users to explore GWAS signals in depth. The integrated data is made available through the web portal, for bulk download and via a GraphQL API, and the software is open source. Applications of this integrated data include identification of novel targets for drug discovery and drug repurposing.
0
Citation400
0
Save
0

Open Targets Platform: supporting systematic drug–target identification and prioritisation

David Ochoa et al.Nov 11, 2020
Abstract The Open Targets Platform (https://www.targetvalidation.org/) provides users with a queryable knowledgebase and user interface to aid systematic target identification and prioritisation for drug discovery based upon underlying evidence. It is publicly available and the underlying code is open source. Since our last update two years ago, we have had 10 releases to maintain and continuously improve evidence for target–disease relationships from 20 different data sources. In addition, we have integrated new evidence from key datasets, including prioritised targets identified from genome-wide CRISPR knockout screens in 300 cancer models (Project Score), and GWAS/UK BioBank statistical genetic analysis evidence from the Open Targets Genetics Portal. We have evolved our evidence scoring framework to improve target identification. To aid the prioritisation of targets and inform on the potential impact of modulating a given target, we have added evaluation of post-marketing adverse drug reactions and new curated information on target tractability and safety. We have also developed the user interface and backend technologies to improve performance and usability. In this article, we describe the latest enhancements to the Platform, to address the fundamental challenge that developing effective and safe drugs is difficult and expensive.
0
Citation332
0
Save
0

Population-wide copy number variation calling using variant call format files from 6,898 individuals

Grace Png et al.Dec 21, 2018
Copy number variants (CNVs) are large deletions or duplications at least 50 to 200 base pairs long. They play an important role in multiple disorders, but accurate calling of CNVs remains challenging. Most current approaches to CNV detection use raw read alignments, which are computationally intensive to process. We use a regression tree-based approach to call CNVs from whole-genome sequencing (WGS, >18x) variant call-sets in 6,898 samples across four European cohorts, and describe a rich large variation landscape comprising 1,320 CNVs. 61.8% of detected events have been previously reported in the Database of Genomic Variants. 23% of high-quality deletions affect entire genes, and we recapitulate known events such as the GSTM1 and RHD gene deletions. We test for association between the detected deletions and 275 protein levels in 1,457 individuals to assess the potential clinical impact of the detected CNVs. We describe the LD structure and copy number variation underlying the association between levels of the CCL3 protein and a complex structural variant (MAF=0.15, p=3.6x10-12) affecting CCL3L3, a paralog of the CCL3 gene. We also identify a cis-association between a low-frequency NOMO1 deletion and the protein product of this gene (MAF=0.02, p=2.2x10-7), for which no cis- or trans- single nucleotide variant-driven protein quantitative trait locus (pQTL) has been documented to date. This work demonstrates that existing population-wide WGS call-sets can be mined for CNVs with minimal computational overhead, delivering insight into a less well-studied, yet potentially impactful class of genetic variant. The regression tree based approach, UN-CNVc, is available as an R and bash executable on GitHub at https://github.com/agilly/un-cnvc. Supplementary information is appended.
Load More