SS
Sharon Shoham
Author with expertise in Optogenetics in Neuroscience and Biophysics Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
1,306
h-index:
40
/
i10-index:
71
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects

Boris Krasovitski et al.Feb 7, 2011
The purpose of this study was to develop a unified model capable of explaining the mechanisms of interaction of ultrasound and biological tissue at both the diagnostic nonthermal, noncavitational (<100 mW·cm −2 ) and therapeutic, potentially cavitational (>100 mW·cm −2 ) spatial peak temporal average intensity levels. The cellular-level model (termed “bilayer sonophore”) combines the physics of bubble dynamics with cell biomechanics to determine the dynamic behavior of the two lipid bilayer membrane leaflets. The existence of such a unified model could potentially pave the way to a number of controlled ultrasound-assisted applications, including CNS modulation and blood–brain barrier permeabilization. The model predicts that the cellular membrane is intrinsically capable of absorbing mechanical energy from the ultrasound field and transforming it into expansions and contractions of the intramembrane space. It further predicts that the maximum area strain is proportional to the acoustic pressure amplitude and inversely proportional to the square root of the frequency ( ) and is intensified by proximity to free surfaces, the presence of nearby microbubbles in free medium, and the flexibility of the surrounding tissue. Model predictions were experimentally supported using transmission electron microscopy (TEM) of multilayered live-cell goldfish epidermis exposed in vivo to continuous wave (CW) ultrasound at cavitational (1 MHz) and noncavitational (3 MHz) conditions. Our results support the hypothesis that ultrasonically induced bilayer membrane motion, which does not require preexistence of air voids in the tissue, may account for a variety of bioeffects and could elucidate mechanisms of ultrasound interaction with biological tissue that are currently not fully understood.
0

Cell-Type-Selective Effects of Intramembrane Cavitation as a Unifying Theoretical Framework for Ultrasonic Neuromodulation

Michael Plaksin et al.May 1, 2016
Abstract Diverse translational and research applications could benefit from the noninvasive ability to reversibly modulate (excite or suppress) CNS activity using ultrasound pulses, however, without clarifying the underlying mechanism, advanced design-based ultrasonic neuromodulation remains elusive. Recently, intramembrane cavitation within the bilayer membrane was proposed to underlie both the biomechanics and the biophysics of acoustic bio-effects, potentially explaining cortical stimulation results through a neuronal intramembrane cavitation excitation (NICE) model. Here, NICE theory is shown to provide a detailed predictive explanation for the ability of ultrasonic (US) pulses to also suppress neural circuits through cell-type-selective mechanisms: according to the predicted mechanism T-type calcium channels boost charge accumulation between short US pulses selectively in low threshold spiking interneurons, promoting net cortical network inhibition. The theoretical results fit and clarify a wide array of earlier empirical observations in both the cortex and thalamus regarding the dependence of ultrasonic neuromodulation outcomes (excitation-suppression) on stimulation and network parameters. These results further support a unifying hypothesis for ultrasonic neuromodulation, highlighting the potential of advanced waveform design for obtaining cell-type-selective network control.
0

Two-photon imaging of excitatory and inhibitory neural response to infrared neural stimulation

Peng Fu et al.Mar 3, 2024
Abstract Significance Pulsed infrared neural stimulation (INS, 1875 nm) is an emerging neurostimulation technology that delivers focal pulsed heat to activate functionally specific mesoscale networks and holds promise for clinical application. However, little is known about its effect on excitatory and inhibitory cell types in cerebral cortex. Aim Estimates of summed population neuronal response timecourses provide a potential basis for neural and hemodynamic signals described in other studies. Approach Using two-photon calcium imaging in mouse somatosensory cortex, we have examined the effect of INS pulse train application on hSyn neurons and mDlx neurons tagged with GCaMP6s. Results We find that, in anesthetized mice, each INS pulse train reliably induces robust response in hSyn neurons exhibiting positive going responses. Surprisingly, mDlx neurons exhibit negative going responses. Quantification using the index of correlation illustrates responses are reproducible, intensity-dependent, and distance-dependent. Also, a contralateral activation is observed when INS application. Conclusions In sum, the population of neurons stimulated by INS includes both hSyn and mDlx neurons; within a range of stimulation intensities, this leads to overall excitation in the stimulated population, leading to the previously observed activations at distant post-synaptic sites.
1

Multi-parametric characterization of brain-wide hemodynamic and calcium responses to sensory stimulation in mice

Zhenyue Chen et al.Nov 10, 2021
Abstract Modern optical neuroimaging approaches are expanding our ability to elucidate complex brain function. Diverse imaging contrasts enable direct observation of neural activity with functional sensors along with the induced hemodynamic responses. To date, decoupling the complex interplay of neurovascular coupling and dynamical physiological states has remained challenging when employing single-modality functional neuroimaging tools. We devised a hybrid fluorescence optoacoustic tomography (FLOT) platform combined with a custom data processing pipeline based on statistical parametric mapping, accomplishing the first simultaneous noninvasive observation of both direct and indirect brain-wide activation patterns with optical contrast. Correlated changes in the oxy- and deoxygenated hemoglobin, total hemoglobin, oxygen saturation and rapid GCaMP6f fluorescence signals were observed in response to peripheral sensory stimulation. While the concurrent epifluorescence served to corroborate and complement the functional optoacoustic observations, the latter further aided in decoupling the rapid calcium responses from the slowly varying background in the fluorescence recordings mediated by hemodynamic changes. The hybrid imaging platform expands the capabilities of conventional neuroimaging methods to provide more comprehensive functional readings for studying neurovascular and neurometabolic coupling mechanisms and related diseases.
Load More