EO
Elizabeth Ottosen
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Fitness factor genes conserved within the multi-species core genome of Gram-negative Enterobacterales species contribute to bacteremia pathogenesis

Harry Mobley et al.Aug 23, 2024
There is a critical gap in knowledge about how Gram-negative bacterial pathogens, using survival strategies developed for other niches, cause lethal bacteremia. Facultative anaerobic species of the Enterobacterales order are the most common cause of Gram-negative bacteremia, including Escherichia coli , Klebsiella pneumoniae , Serratia marcescens , Citrobacter freundii , and Enterobacter hormaechei . Bacteremia often leads to sepsis, a life-threatening organ dysfunction resulting from unregulated immune responses to infection. Despite a lack of specialization for this host environment, Gram-negative pathogens cause nearly half of bacteremia cases annually. Based on our existing Tn-Seq fitness factor data from a murine model of bacteremia combined with comparative genomics of the five Enterobacterales species above, we prioritized 18 conserved fitness genes or operons for further characterization. Mutants were constructed for all genes in all five species. Each mutant was used to cochallenge C57BL/6 mice via tail vein injection along with each respective wild-type strain to determine competitive indices for each fitness gene. Five fitness factor genes, when mutated, attenuated mutants in four or five species in the spleen and liver ( tatC , ruvA , gmhB , wzxE , arcA ). Five additional fitness factor genes or operons were validated as outcompeted by wild-type in three, four, or five bacterial species in the spleen ( xerC , prc , apaGH , atpG , aroC ). Overall, 17 of 18 fitness factor mutants were attenuated in at least one species in the spleen or liver. Together, these findings allow for the development of a model of bacteremia pathogenesis that may include future targets of therapy against bloodstream infections.
0
Citation1
0
Save
0

Fitness Factor Genes Conserved within the Multi-species Core Genome of Gram-negative Enterobacterales Species Contribute to Bacteremia Pathogenesis

Harry Mobley et al.Mar 18, 2024
Abstract There is a critical gap in knowledge about how Gram-negative bacterial pathogens, using survival strategies developed for other niches, cause lethal bacteremia. Facultative anaerobic species of the Enterobacterales order are the most common cause of Gram-negative bacteremia, including Escherichia coli , Klebsiella pneumoniae , Serratia marcescens, Citrobacter freundii, and Enterobacter hormaechei . Bacteremia often leads to sepsis, a life-threatening organ dysfunction resulting from an unregulated immune response to infection. Despite a lack of specialization for this host environment, Gram-negative pathogens cause nearly half of bacteremia cases annually. Based on our existing Tn-Seq fitness factor data from a murine model of bacteremia combined with comparative genomics of the five Enterobacterales species above, we prioritized 18 conserved fitness genes or operons for further characterization. Each mutant in each species was used to cochallenge C57BL/6 mice via tail vein injection along with the respective wild-type strain to determine competitive indices for each fitness gene or operon. Among the five species, we found three fitness factor genes, that when mutated, attenuated the mutant for all species in the spleen and liver ( tatC, ruvA, gmhB ). Nine additional fitness factor genes or operons were validated as outcompeted by wild-type in three or four bacterial species in the spleen ( xerC , wzxE , arcA , prc , apaGH , atpG , lpdA , ubiH , aroC ). Overall, 17 of 18 fitness factor mutants were attenuated in at least one species in the spleen or liver. Together, these findings allow for the development of a model of bacteremia pathogenesis that may include future targets of therapy against bloodstream infections. >Author Summary Frequent cases of bacteremia plague our ICUs, bone marrow transplant units, and inpatient facilities. Nearly half of these infections are caused by Gram-negative bacteria. The Enterobacterales order including E. coli , K. pneumoniae, S. marcescens, C. freundii , and E. hormaechei are leading causes of bacteremia. An alarming proportion of these are due to antibiotic-resistant isolates, which are four times more likely to kill than antibiotic-susceptible isolates. Clearly, we need new therapeutic targets to treat cases of bacteremia and sepsis. Previously, it has been unclear what genes contribute to their ability to survive in this hostile host environment. We have previously undertaken unbiased genetic screens to identify 18 genes shared by all five bacterial genera that are required for survival in blood and blood-filtering organs. These include genes that encode proteins that maintain proton motive force, resist antimicrobial peptides and complement, mediate genome maintenance, transport key metabolites and proteins, avoid oxidative stress, acquire iron, and regulate key pathways. Mutants, constructed in these shared genes in the five species, were validated for a high proportion of genes as critical for infection in the mouse model of bacteremia.
0

A novel method for integrating genomic and Tn-Seq data to identify commonin vivofitness mechanisms across multiple bacterial species

Derrick Fouts et al.Jul 25, 2024
Sepsis is life-threatening organ dysfunction due to an unregulated immune response to infection. Bacteremia is a leading cause of sepsis, and members of the Enterobacterales cause nearly half of bacteremia cases annually. While previous Tn-Seq studies to identify novel bacteremia-fitness genes have provided valuable insight into virulence mechanisms, evidence for common pathways across species was lacking. To identify common fitness pathways in five bacteremia-caused Enterobacterales species, we utilized the JCVI pan-genome pipeline to integrate Tn-Seq fitness data with multiple available functional data types. Core genes from species pan-genomes were used to construct a multi-species core pan-genome, producing 2,850 core gene clusters found in four out of the five species. Integration of Tn-Seq fitness data enabled identification of 373 protein clusters that were conserved in all five species. A scoring rubric was applied to these clusters, which incorporated Tn-Seq fitness defects, operon localization, and antibiotic susceptibility data to identify seven common bacteremia-fitness pathways. Mutations in tatC showed reduced fitness in vivo and increased susceptibility to beta-lactams that were restored following tatC complementation in trans . By integrating known operon structures and antibiotic susceptibility with Tn-Seq fitness data, common genes within the core pan-genome emerged and revealed mechanisms that are essential for colonization of, or survival in, the mammalian bloodstream. Our prediction and validation of tatC as a common bacteremia fitness factor and contributor of antibiotic resistance supports the utility of this bioinformatic approach. This study represents a major step forward to identify novel targets of therapy against these deadly widespread sepsis infections.