MO
Masayuki Onishi
Author with expertise in Molecular Mechanisms of Photosynthesis and Photoprotection
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
5
h-index:
24
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Evolutionary Origins and Ancestral Features of Septins

Samed Delic et al.Mar 27, 2024
ABSTRACT Septins are a family of membrane-associated cytoskeletal GTPases that play crucial roles in various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite their importance, the evolutionary origins and ancestral function of septins remain unclear. In opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups assembling into heteropolymers, thus supporting their diverse molecular functions. Recent studies have revealed that septins are also conserved in algae and protists, indicating an ancient origin from the last eukaryotic common ancestor. However, the phylogenetic relationships among septins across eukaryotes remained unclear. Here, we expanded the list of non-opisthokont septins, including previously unrecognized septins from rhodophyte red algae and glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7 representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes, and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at least one septin in most algal and ciliate species. This residue is required for homodimerization of the single Chlamydomonas septin, and its loss coincided with septin duplication events in various lineages. The loss of the arginine finger is often accompanied by the emergence of the α0 helix, a known NC-interface interaction motif, potentially signifying the diversification of septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly, we found amphipathic helices in all septin groups, suggesting that curvature-sensing is an ancestral trait of septin proteins. Coiled-coil domains were also broadly distributed, while transmembrane domains were found in some septins in Group 6A and 7. In summary, this study advances our understanding of septin distribution and phylogenetic groupings, shedding light on their ancestral features, potential function, and early evolution.
0
Citation2
0
Save
1

Alternative proteoforms and proteoform-dependent assemblies in humans and plants

Claire McWhite et al.Sep 22, 2022
ABSTRACT Variability of proteins at the sequence level creates an enormous potential for proteome complexity. Exploring the depths and limits of this complexity is an ongoing goal in biology. Here, we systematically survey human and plant high-throughput bottom-up native proteomics data for protein truncation variants, where substantial regions of the full-length protein are missing from an observed protein product. In humans, Arabidopsis , and the green alga Chlamydomonas , approximately one percent of observed proteins show a short form, which we can assign by comparison to RNA isoforms as either likely deriving from transcript-directed processes or limited proteolysis. While some detected protein fragments align with known splice forms and protein cleavage events, multiple examples are previously undescribed, such as our observation of fibrocystin proteolysis and nuclear translocation in a green alga. We find that truncations occur almost entirely between structured protein domains, even when short forms are derived from transcript variants. Intriguingly, multiple endogenous protein truncations of phase-separating translational proteins resemble cleaved proteoforms produced by enteroviruses during infection. Some truncated proteins are also observed in both humans and plants, suggesting that they date to the last eukaryotic common ancestor. Finally, we describe novel proteoform-specific protein complexes, where loss of a domain may accompany complex formation.
1
Citation2
0
Save
0

Chloroplast Methyltransferase Homolog RMT2 is Involved in Photosystem I Biogenesis

Rick Kim et al.Dec 22, 2023
Abstract Oxygen (O 2 ), a dominant element in the atmosphere and essential for most life on Earth, is produced by the photosynthetic oxidation of water. However, metabolic activity can cause accumulation of reactive O 2 species (ROS) and severe cell damage. To identify and characterize mechanisms enabling cells to cope with ROS, we performed a high-throughput O 2 sensitivity screen on a genome-wide insertional mutant library of the unicellular alga Chlamydomonas reinhardtii . This screen led to identification of a gene encoding a protein designated Rubisco methyltransferase 2 (RMT2). Although homologous to methyltransferases, RMT2 has not been experimentally demonstrated to have methyltransferase activity. Furthermore, the rmt2 mutant was not compromised for Rubisco (first enzyme of Calvin-Benson Cycle) levels but did exhibit a marked decrease in accumulation/activity of photosystem I (PSI), which causes light sensitivity, with much less of an impact on other photosynthetic complexes. This mutant also shows increased accumulation of Ycf3 and Ycf4, proteins critical for PSI assembly. Rescue of the mutant phenotype with a wild-type (WT) copy of RMT2 fused to the mNeonGreen fluorophore indicates that the protein localizes to the chloroplast and appears to be enriched in/around the pyrenoid, an intrachloroplast compartment present in many algae that is packed with Rubisco and potentially hypoxic. These results indicate that RMT2 serves an important role in PSI biogenesis which, although still speculative, may be enriched around or within the pyrenoid. Significance Statement A high-throughput genetic screen was used to identify O 2 sensitive mutants of Chlamydomonas reinhardtii (Chlamydomonas throughout) that experience elevated oxidative stress in the light relative to WT cells. Identification of genes altered in these mutants offers opportunities to discover activities that a ) protect photosynthetic cells from oxidative damage, b ) participate in rapid assembly of photosynthetic complexes, which would limit accessibility of intermediates to O 2 , and/or c ) facilitate repair of damaged cellular complexes. A mutant from this screen disrupted for RMT2 , originally described as encoding a Rubisco methyltransferase, was defective for PSI biogenesis. Additionally, RMT2 appears to be enriched in/around the pyrenoid, a chloroplast localized compartment harboring much of the Chlamydomonas Rubisco, raising the possibility that this compartment plays a role in PSI biogenesis.
0
Citation1
0
Save
0

Cleavage-furrow formation without F-actin in Chlamydomonas

Masayuki Onishi et al.Oct 1, 2019
It is widely believed that cleavage-furrow formation during cell division is driven by the contraction of a ring containing F-actin and type-II myosin. However, even in cells that have such rings, they are not always essential for furrow formation. Moreover, many taxonomically diverse eukaryotic cells divide by furrowing but have no type-II myosin, making it unlikely that an actomyosin ring drives furrowing. To explore this issue further, we have used one such organism, the green alga Chlamydomonas reinhardtii . We found that although F-actin is concentrated in the furrow region, none of the three myosins (of types VIII and XI) is localized there. Moreover, when F-actin was eliminated through a combination of a mutation and a drug, furrows still formed and the cells divided, although somewhat less efficiently than normal. Unexpectedly, division of the large Chlamydomonas chloroplast was delayed in the cells lacking F-actin; as this organelle lies directly in the path of the cleavage furrow, this delay may explain, at least in part, the delay in cell division itself. Earlier studies had shown an association of microtubules with the cleavage furrow, and we used a fluorescently tagged EB1 protein to show that at least the microtubule plus-ends are still associated with the furrows in the absence of F-actin, consistent with the possibility that the microtubules are important for furrow formation. We suggest that the actomyosin ring evolved as one way to improve the efficiency of a core process for furrow formation that was already present in ancestral eukaryotes.
0

Rapid adaptive evolution of microbial thermal performance curves

Megan Liu et al.May 3, 2024
ABSTRACT Microbial respiration alone releases massive amounts of Carbon (C) into the atmosphere each year, greatly impacting the global C cycle that fuels climate change. Larger microbial population growth often leads to larger standing biomass, which in turns leads to higher respiration. How rising temperatures might influence microbial population growth, however, depends on how microbial thermal performance curves (TPCs) governing this growth may adapt in novel environments. This thermal adaptation will in turn depend on there being heritable genetic variation in TPCs for selection to act upon. While intraspecific variation in TPCs is traditionally viewed as being mostly environmental (E, or plastic) as a single individual can have an entire TPC, our study uncovers substantial heritable genetic variation (G) and Gene-by-Environment interactions (GxE) in the TPC of a widely distributed ciliate microbe. G results in predictable evolutionary responses to temperature-dependent selection that ultimately shape TPC adaptation in a warming world. Through mathematical modeling and experimental evolution assays we also show that TPC GxE leads to predictable temperature-dependent shifts in population genetic makeup that constrains the potential for future adaptation to warming. That is, adaptive evolution can select for decreased genetic variation which subsequently lowers the evolutionary potential of microbial TPCs. Our study reveals how temperature-dependent adaptive evolution shapes microbial population growth, a linchpin of global ecosystem function, amidst accelerating climate warming.
1

Control of division and microtubule dynamics in Chlamydomonas by cyclin B/CDKB1 and the anaphase-promoting complex

Kresti Pecani et al.Jun 29, 2021
ABSTRACT In yeast and animals, cyclin B binds and activates the cyclin-dependent kinase (‘CDK’) CDK1 to drive entry into mitosis. We show that CYCB1, the sole cyclin B in Chlamydomonas , activates the plant-specific CDKB1 rather than the CDK1 ortholog CDKA1. Time-lapse microscopy shows that CYCB1 is synthesized before each division in the multiple fission cycle, then is rapidly degraded 3-5 minutes before division occurs. CYCB1 degradation is dependent on the anaphase-promoting complex (APC). Like CYCB1, CDKB1 is not synthesized until late G1; however, CDKB1 is not degraded with each division within the multiple fission cycle. The microtubule plus-end-binding protein EB1 labeled with mNeonGreen (EB1-NG) allowed detection of mitotic events in live cells. The earliest detectable step in mitosis, splitting of polar EB1-NG signal into two foci, likely associated with future spindle poles, was dependent on CYCB1. CYCB1-GFP localized close to these foci immediately before spindle formation. Spindle breakdown, cleavage furrow formation and accumulation of EB1 in the furrow were dependent on the APC. In interphase, rapidly growing microtubules are marked by ‘comets’ of EB1; comets are absent in the absence of APC function. Thus CYCB1/CDKB1 and the APC mitosis modulate microtubule dynamics while regulating mitotic progression.
0

Species interactions and food-web context drive temperature-dependent prey evolution

Ze‐Yi Han et al.May 8, 2024
ABSTRACT Understanding how global warming shapes species evolution within communities is a pressing goal of ecology. Temperature affects interacting species and can lead to changes in species interactions, but how that will alter species evolutionary trajectories within complex food webs is poorly understood. Here we address 1) whether different predators affect prey evolution differentially, 2) whether the food web context in which this happens influences prey evolution, 3) whether temperature affects prey evolution directly, and 4) whether ecological interactions mediate how temperature affects prey evolution. We use a combination of mathematical modeling and experimental evolution assays in microbial food webs composed of prey algae and their protists predators. We found that temperature alone doesn’t drive prey evolution unless predators are involved. Importantly, the influence of temperature through predation is contingent on the food web structure. This leads to distinct evolutionary trajectories when prey evolves with predators alone or with a competing predator present. Our findings indicate that the species evolution to warming is likely contingent on their specific ecological contexts, suggesting that similar species across different food webs could exhibit diverse evolutionary responses to new climates.
232

Systematic characterization of gene function in a photosynthetic organism

Josep Vilarrasa‐Blasi et al.Dec 11, 2020
Photosynthetic organisms are essential for human life, yet most of their genes remain functionally uncharacterized. Single-celled photosynthetic model systems have the potential to accelerate our ability to connect genes to functions. Here, using a barcoded mutant library of the model eukaryotic alga Chlamydomonas reinhardtii , we determined the phenotypes of more than 58,000 mutants under more than 121 different environmental growth conditions and chemical treatments. 78% of genes are represented by at least one mutant that showed a phenotype, providing clues to the functions of thousands of genes. Mutant phenotypic profiles allow us to place known and previously uncharacterized genes into functional pathways such as DNA repair, photosynthesis, the CO 2 -concentrating mechanism, and ciliogenesis. We illustrate the value of this resource by validating novel phenotypes and gene functions, including the discovery of three novel components of a defense pathway that counteracts actin cytoskeleton inhibitors released by other organisms. The data also inform phenotype discovery in land plants: mutants in Arabidopsis thaliana genes exhibit similar phenotypes to those we observed in their Chlamydomonas homologs. We anticipate that this resource will guide the functional characterization of genes across the tree of life.