LK
Leila Kushan
Author with expertise in Molecular Mechanisms of Cardiac Development and Regeneration
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(58% Open Access)
Cited by:
298
h-index:
21
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Auditory verbal hallucinations predominantly activate the right inferior frontal area

Iris Sommer et al.Oct 13, 2008
The pathophysiology of auditory verbal hallucinations (AVH) is largely unknown. Several functional imaging studies have measured cerebral activation during these hallucinations, but sample sizes were relatively small (one to eight subjects) and findings inconsistent. In this study cerebral activation was measured using fMRI in 24 psychotic patients while they experienced AVH in the scanner and, in another session, while they silently generated words. All patients were right handed and diagnosed with schizophrenia, schizo-affective disorder or psychotic disorder not otherwise specified. Group analysis for AVH revealed activation in the right homologue of Broca's area, bilateral insula, bilateral supramarginal gyri and right superior temporal gyrus. Broca's area and left superior temporal gyrus were not activated. Group analysis for word generation in these patients yielded activation in Broca's and Wernicke's areas and to a lesser degree their right-sided homologues, bilateral insula and anterior cingulate gyri. Lateralization of activity during AVH was not correlated with language lateralization, but rather with the degree to which the content of the hallucinations had a negative emotional valence. The main difference between cerebral activity during AVH and activity during normal inner speech appears to be the lateralization. The predominant engagement of the right inferior frontal area during AVH may be related to the typical low semantic complexity and negative emotional content.
1

Using rare genetic mutations to revisit structural brain asymmetry

Jakub Kopál et al.Apr 18, 2023
Abstract Asymmetry between the left and right brain is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variant studies, which typically exert small effects on brain phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We quantitatively dissected the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior mapping highlights the consequences of genetically controlled brain lateralization on human-defining cognitive traits.
1
Citation2
0
Save
20

Rare CNVs and phenome-wide profiling: a tale of brain-structural divergence and phenotypical convergence

Jakub Kopál et al.Apr 25, 2022
Abstract Copy number variations (CNVs) are rare genomic deletions and duplications that can exert profound effects on brain and behavior. Previous reports of pleiotropy in CNVs imply that they converge on shared mechanisms at some level of pathway cascades, from genes to large-scale neural circuits to the phenome. However, studies to date have primarily examined single CNV loci in small clinical cohorts. It remains unknown how distinct CNVs escalate the risk for the same developmental and psychiatric disorders. Here, we quantitatively dissect the impact on brain organization and behavioral differentiation across eight key CNVs. In 534 clinical CNV carriers from multiple sites, we explored CNV-specific brain morphology patterns. We extensively annotated these CNV-associated patterns with deep phenotyping assays through the UK Biobank resource. Although the eight CNVs cause disparate brain changes, they are tied to similar phenotypic profiles across ∼1000 lifestyle indicators. Our population-level investigation established brain structural divergences and phenotypical convergences of CNVs, with direct relevance to major brain disorders.
20
Citation2
0
Save
0

Synaptic-dependent developmental dysconnectivity in 22q11.2 deletion syndrome

Filomena Alvino et al.Mar 31, 2024
Abstract Chromosome 22q11.2 deletion is among the strongest known genetic risk factors for neuropsychiatric disorders, including autism and schizophrenia. Brain imaging studies have reported disrupted large-scale functional connectivity in people with 22q11 deletion syndrome (22q11DS). However, the significance and biological determinants of these functional alterations remain unclear. Here, we use a cross-species design to investigate the developmental trajectory and neural underpinnings of brain dysconnectivity in 22q11DS. We find that LgDel mice, an established mouse model of 22q11DS, exhibit age-specific patterns of functional MRI (fMRI) dysconnectivity, with widespread fMRI hyper-connectivity in juvenile mice reverting to focal hippocampal hypoconnectivity over puberty. These fMRI connectivity alterations are mirrored by co-occurring developmental alterations in dendritic spine density, and are both transiently normalized by developmental GSK3β inhibition, suggesting a synaptic origin for this phenomenon. Notably, analogous hyper-to hypoconnectivity reconfiguration occurs also in human 22q11DS, where it affects hippocampal and cortical regions spatially enriched for synaptic genes that interact with GSK3β, and autism-relevant transcripts. Functional dysconnectivity in somatomotor components of this network is predictive of age-dependent social alterations in 22q11.2 deletion carriers. Taken together, these findings suggest that synaptic-related mechanisms underlie developmentally mediated functional dysconnectivity in 22q11DS.
0

Neurocognitive profiles of 22q11.2 and 16p11.2 deletions and duplications

Donna McDonald‐McGinn et al.Jul 24, 2024
Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are genetic disorders with lifespan risk for neuropsychiatric disorders. Microdeletions and duplications are associated with neurocognitive deficits, yet few studies compared these groups using the same measures to address confounding measurement differences. We report a prospective international collaboration applying the same computerized neurocognitive assessment, the Penn Computerized Neurocognitive Battery (CNB), administered in a multi-site study on rare genomic disorders: 22q11.2 deletions (n = 492); 22q11.2 duplications (n = 106); 16p11.2 deletion (n = 117); and 16p11.2 duplications (n = 46). Domains examined include executive functions, episodic memory, complex cognition, social cognition, and psychomotor speed. Accuracy and speed for each domain were included as dependent measures in a mixed-model repeated measures analysis. Locus (22q11.2, 16p11.2) and Copy number (deletion/duplication) were grouping factors and Measure (accuracy, speed) and neurocognitive domain were repeated measures factors, with Sex and Site as covariates. We also examined correlation with IQ. We found a significant Locus × Copy number × Domain × Measure interaction (p = 0.0004). 22q11.2 deletions were associated with greater performance accuracy deficits than 22q11.2 duplications, while 16p11.2 duplications were associated with greater specific deficits than 16p11.2 deletions. Duplications at both loci were associated with reduced speed compared to deletions. Performance profiles differed among the groups with particularly poor memory performance of the 22q11.2 deletion group while the 16p11.2 duplication group had greatest deficits in complex cognition. Average accuracy on the CNB was moderately correlated with Full Scale IQ. Deletions and duplications of 22q11.2 and 16p11.2 have differential effects on accuracy and speed of neurocognition indicating locus specificity of performance profiles. These profile differences can help inform mechanistic substrates to heterogeneity in presentation and outcome, and can only be established in large-scale international consortia using the same neurocognitive assessment. Future studies could aim to link performance profiles to clinical features and brain function.
0
Citation1
0
Save
0

Unique functional neuroimaging signatures of genetic versus clinical high risk for psychosis

Charles Schleifer et al.Apr 5, 2024
Abstract Background 22q11.2 Deletion Syndrome (22qDel) is a copy number variant (CNV) associated with psychosis and other neurodevelopmental disorders. Adolescents at clinical high risk for psychosis (CHR) have subthreshold psychosis symptoms without known genetic risk factors. Whether common neural substrates underlie these distinct high-risk populations is unknown. We compared functional brain measures in 22qDel and CHR cohorts and mapped results to biological pathways. Methods We analyzed two large multi-site cohorts with resting-state functional MRI (rs-fMRI): 1) 22qDel (n=164, 47% female) and typically developing (TD) controls (n=134, 56% female); 2) CHR individuals (n=244, 41% female) and TD controls (n=151, 46% female) from the North American Prodrome Longitudinal Study-2. We computed global brain connectivity (GBC), local connectivity (LC), and brain signal variability (BSV) across cortical regions, testing case-control differences for 22qDel and CHR separately. Group difference maps were related to published brain maps using autocorrelation-preserving permutation. Results BSV, LC, and GBC are significantly disrupted in 22qDel compared with TD controls (False Discovery Rate q<0.05). Spatial maps of BSV and LC differences are highly correlated with each other, unlike GBC. In CHR, only LC is significantly altered versus controls, with a different spatial pattern compared to 22qDel. Group differences map onto biological gradients, with 22qDel effects strongest in regions with high predicted blood flow and metabolism. Conclusion 22qDel and CHR exhibit divergent effects on fMRI temporal variability and multi-scale functional connectivity. In 22qDel, strong and convergent disruptions in BSV and LC not seen in CHR individuals suggest distinct functional brain alterations.
0

Reciprocal Disruptions in Thalamic and Hippocampal Resting-State Functional Connectivity in Youth with 22q11.2 Deletions

Charles Schleifer et al.Nov 29, 2017
22q11.2 deletion syndrome (22q11DS) is a recurrent copy number variant (CNV) with high penetrance for developmental neuropsychiatric disorders. Study of individuals with 22q11DS therefore may offer key insights into neural mechanisms underlying such complex illnesses. Resting-state functional MRI (rs-fMRI) studies in idiopathic schizophrenia have consistently revealed disruption of thalamic and hippocampal circuitry. Here, we sought to test whether this circuitry is similarly disrupted in the context of this genetic high-risk condition. To this end, resting-state functional connectivity patterns were assessed in a sample of young men and women with 22q11DS (n=42) and demographically matched healthy controls (n=39). Neuroimaging data were acquired via single-band protocols, and analyzed in line with methods provided by the Human Connectome Project (HCP). We computed functional relationships between individual-specific anatomically-defined thalamic and hippocampal seeds and all gray matter voxels in the brain. Whole-brain type I error protection was achieved through nonparametric permutation-based methods. 22q11DS patients displayed reciprocal disruptions in thalamic and hippocampal functional connectivity relative to control subjects. Thalamo-cortical coupling was increased in sensorimotor cortex, and reduced across associative networks. The opposite effect was observed for the hippocampus in regards to sensory and associative network connectivity. The thalamic and hippocampal dysconnectivity observed in 22q11DS suggest that high genetic risk for psychiatric illness is linked with disruptions in large-scale cortico-subcortical networks underlying higher-order cognitive functions. These effects highlight the translational importance of large-effect CNVs for informing mechanisms underlying neural disruptions observed in idiopathic developmental neuropsychiatric disorders.
1

Longitudinal development of thalamocortical functional connectivity in 22q11.2 deletion syndrome

Charles Schleifer et al.Jun 23, 2023
Abstract Background 22q11.2 Deletion Syndrome (22qDel) is a genetic Copy Number Variant (CNV) that strongly increases risk for schizophrenia and other neurodevelopmental disorders. Disrupted functional connectivity between the thalamus and somatomotor/frontoparietal cortex has been implicated in cross-sectional studies of 22qDel, idiopathic schizophrenia, and youth at clinical high risk (CHR) for psychosis. Here, we use a novel functional atlas approach to investigate longitudinal age-related changes in network-specific thalamocortical functional connectivity (TCC) in 22qDel and typically developing (TD) controls. Methods TCC was calculated for nine functional networks derived from resting-state functional magnetic resonance imaging (rs-fMRI) scans collected from n=65 22qDel participants (63.1% female) and n=69 demographically matched TD controls (49.3% female), ages 6 to 23 years. Analyses included 86 longitudinal follow-up scans. Non-linear age trajectories were characterized with general additive mixed models (GAMMs). Results In 22qDel, TCC in the frontoparietal network increases until approximately age 13, while somatomotor and cingulo-opercular TCC decrease from age 6 to 23. In contrast, no significant relationships between TCC and age were found in TD controls. Somatomotor connectivity in 22qDel is significantly higher than TD in childhood, but lower in late adolescence. Frontoparietal TCC shows the opposite pattern. Conclusions 22qDel is associated with aberrant development of functional network connectivity between the thalamus and cortex. Younger individuals with 22qDel have lower frontoparietal connectivity and higher somatomotor connectivity than controls, but this phenotype may normalize or partially reverse by early adulthood. Altered maturation of this circuitry may underlie elevated neuropsychiatric disease risk in this syndrome.
0

Effects of Gene Dosage and Development on Subcortical Nuclei Volumes in Individuals with 22q11.2 Copy Number Variations

Charles Schleifer et al.Jan 1, 2023
The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in 22qDel (n=96, 53.1% female), 22qDup (n=37, 45.9% female), and TD controls (n=80, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the effect of 22q11.2 gene dosage was examined using linear mixed models. Age-related changes were characterized with general additive mixed models (GAMMs). Positive gene dosage effects (22qDel < TD < 22qDup) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.
Load More