PD
Peter Diebold
Author with expertise in Global Challenge of Antibiotic Resistance in Bacteria
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
3
h-index:
5
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Chemoproteomic profiling of substrate specificity in gut microbiota-associated bile salt hydrolases

Lin Han et al.Jun 1, 2024
+7
A
A
L
The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.
0
Citation2
0
Save
0

Spatial mapping of mobile genetic elements and their bacterial hosts in complex microbiomes

Benjamin Grodner et al.Jun 25, 2024
+9
O
H
B
Abstract The exchange of mobile genetic elements (MGEs) facilitates the spread of functional traits including antimicrobial resistance within bacterial communities. Tools to spatially map MGEs and identify their bacterial hosts in complex microbial communities are currently lacking, limiting our understanding of this process. Here we combined single-molecule DNA fluorescence in situ hybridization (FISH) with multiplexed ribosomal RNA-FISH to enable simultaneous visualization of both MGEs and bacterial taxa. We spatially mapped bacteriophage and antimicrobial resistance (AMR) plasmids and identified their host taxa in human oral biofilms. This revealed distinct clusters of AMR plasmids and prophage, coinciding with densely packed regions of host bacteria. Our data suggest spatial heterogeneity in bacterial taxa results in heterogeneous MGE distribution within the community, with MGE clusters resulting from horizontal gene transfer hotspots or expansion of MGE-carrying strains. Our approach can help advance the study of AMR and phage ecology in biofilms.
0
Citation1
0
Save
1

Spatial Mapping of Mobile Genetic Elements and their Cognate Hosts in Complex Microbiomes

Benjamin Grodner et al.Jun 9, 2023
+6
O
H
B
The frequent exchange of mobile genetic elements (MGEs) between bacteria accelerates the spread of functional traits, including antimicrobial resistance, within the human microbiome. Yet, progress in understanding these intricate processes has been hindered by the lack of tools to map the spatial spread of MGEs in complex microbial communities, and to associate MGEs to their bacterial hosts. To overcome this challenge, we present an imaging approach that pairs single molecule DNA Fluorescence In Situ Hybridization (FISH) with multiplexed ribosomal RNA FISH, thereby enabling the simultaneous visualization of both MGEs and host bacterial taxa. We used this methodology to spatially map bacteriophage and antimicrobial resistance (AMR) plasmids in human oral biofilms, and we studied the heterogeneity in their spatial distributions and demonstrated the ability to identify their host taxa. Our data revealed distinct clusters of both AMR plasmids and prophage, coinciding with densely packed regions of host bacteria in the biofilm. These results suggest the existence of specialized niches that maintain MGEs within the community, possibly acting as local hotspots for horizontal gene transfer. The methods introduced here can help advance the study of MGE ecology and address pressing questions regarding antimicrobial resistance and phage therapy.
0

Chemoproteomic profiling of substrate specificity in gut microbiota-associated bile salt hydrolases

Han Lin et al.Apr 1, 2024
+9
À
L
H
Summary The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host’s overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.
95

Linking plasmid-based beta-lactamases to their bacterial hosts using single-cell fusion PCR

Peter Diebold et al.Jan 23, 2021
+2
M
F
P
Abstract The horizonal transfer of plasmid-encoded genes allows bacteria to adapt to constantly shifting environmental pressures, bestowing functional advantages to their bacterial hosts such as antibiotic resistance, metal resistance, virulence factors, and polysaccharide utilization. However, common molecular methods such as short- and long-read sequencing of microbiomes cannot associate extrachromosomal plasmids with the genome of the host bacterium. Alternative methods to link plasmids to host bacteria are either laborious, expensive or prone to contamination. Here we present the One-step Isolation and Lysis PCR (OIL-PCR) method, which molecularly links target ARGs with the bacterial 16S rRNA gene via fusion PCR performed within an emulsion. After validating this method, we apply it to identify the bacterial hosts of three clinically relevant beta-lactamases in a neutropenic patient population who are particularly vulnerable multidrug-resistant infections. We detect novel associations of two low-abundance genera, Romboutsia and Agathobacter , with a multi-drug resistant plasmid harbored by Klebsiella pneumoniae . We put forth a robust, accessible, and high-throughput platform for sensitively surveying the bacterial hosts of mobile genes in complex microbial communities.
18

Class A Penicillin-Binding Protein-mediated cell wall synthesis promotes structural integrity during peptidoglycan endopeptidase insufficiency

Shannon Murphy et al.Jul 3, 2020
+6
Z
A
S
Abstract The bacterial cell wall is composed primarily of peptidoglycan (PG), a poly-aminosugar that is essential to sustain cell shape, growth and structural integrity. PG is synthesized by two different types of synthase complexes (class A Penicillin-binding Proteins [PBP]s/Lpos and Shape, Elongation, Division, Sporulation [SEDS]/class B PBP pairs) and degraded by ‘autolytic’ enzymes to accommodate growth processes. It is thought that autolsyin activity (and particulary the activity of endopeptidases, EPs) is required for PG synthesis and incorporation by creating gaps that are patched and paved by PG synthases, but the exact relationship between autolysins and the separate synthesis machineries remains incompletely understood. Here, we have probed the consequences of EP depletion for PG synthesis in the diarrheal pathogen Vibrio cholerae . We found that EP depletion resulted in severe morphological defects, increased cell mass, a decline in viability, and continuing (yet aberrant) incorporation of cell wall material. Mass increase and cell wall incorporation proceeded in the presence of Rod system inhibitors, but was abolished upon inhibition of aPBPs. However, the Rod system remained functional (i.e., exhibited sustained directed motion) even after prolonged EP depletion, without effectively promoting cell elongation. Lastly, heterologous expression of an EP from Neisseria gonorrhoeae could fully complement growth and morphology of an EP-insufficient V. cholerae . Overall, our findings suggest that in V. cholerae , the Rod system requires endopeptidase activity (but not necessarily direct interaction with EPs) to promote cell expansion and substantial PG incorporation, whereas aPBPs are able to engage in sacculus construction even during severe EP insufficiency. Importance Synthesis and turnover of the bacterial cell wall must be tightly co-ordinated to avoid structural integrity failure and cell death. Details of this coordination are poorly understood, particularly if and how cell wall turnover enzymes are required for the activity of the different cell wall synthesis machines. Our results suggest that in Vibrio cholerae , one class of turnover enzymes, the endopeptidases, are required only for substantial PG incorporation mediated by the Rod system, while the aPBPs maintain structural integrity during endopeptidase insufficiency. Our results suggest that aPBPs are more versatile than the Rod system in their ability to recognize cell wall gaps formed by autolysins other than the major endopeptidases, adding to our understanding of the co-ordination between autolysins and cell wall synthases. A detailed understanding of autolysin biology may promote the development of antibiotics that target these essential turnover processes.