JM
Jir̆ı́ Macas
Author with expertise in Genome Evolution and Polyploidy in Plants
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(87% Open Access)
Cited by:
1,494
h-index:
61
/
i10-index:
123
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads

Petr Novák et al.Feb 1, 2013
+2
J
P
P
Repetitive DNA makes up large portions of plant and animal nuclear genomes, yet it remains the least-characterized genome component in most species studied so far. Although the recent availability of high-throughput sequencing data provides necessary resources for in-depth investigation of genomic repeats, its utility is hampered by the lack of specialized bioinformatics tools and appropriate computational resources that would enable large-scale repeat analysis to be run by biologically oriented researchers.Here we present RepeatExplorer, a collection of software tools for characterization of repetitive elements, which is accessible via web interface. A key component of the server is the computational pipeline using a graph-based sequence clustering algorithm to facilitate de novo repeat identification without the need for reference databases of known elements. Because the algorithm uses short sequences randomly sampled from the genome as input, it is ideal for analyzing next-generation sequence reads. Additional tools are provided to aid in classification of identified repeats, investigate phylogenetic relationships of retroelements and perform comparative analysis of repeat composition between multiple species. The server allows to analyze several million sequence reads, which typically results in identification of most high and medium copy repeats in higher plant genomes.
0
Citation644
0
Save
0

Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data

Petr Novák et al.Jul 15, 2010
J
P
P
Abstract Background The investigation of plant genome structure and evolution requires comprehensive characterization of repetitive sequences that make up the majority of higher plant nuclear DNA. Since genome-wide characterization of repetitive elements is complicated by their high abundance and diversity, novel approaches based on massively-parallel sequencing are being adapted to facilitate the analysis. It has recently been demonstrated that the low-pass genome sequencing provided by a single 454 sequencing reaction is sufficient to capture information about all major repeat families, thus providing the opportunity for efficient repeat investigation in a wide range of species. However, the development of appropriate data mining tools is required in order to fully utilize this sequencing data for repeat characterization. Results We adapted a graph-based approach for similarity-based partitioning of whole genome 454 sequence reads in order to build clusters made of the reads derived from individual repeat families. The information about cluster sizes was utilized for assessing the proportion and composition of repeats in the genomes of two model species, Pisum sativum and Glycine max , differing in genome size and 454 sequencing coverage. Moreover, statistical analysis and visual inspection of the topology of the cluster graphs using a newly developed program tool, SeqGrapheR , were shown to be helpful in distinguishing basic types of repeats and investigating sequence variability within repeat families. Conclusions Repetitive regions of plant genomes can be efficiently characterized by the presented graph-based analysis and the graph representation of repeats can be further used to assess the variability and evolutionary divergence of repeat families, discover and characterize novel elements, and aid in subsequent assembly of their consensus sequences.
0
Citation423
0
Save
0

A reference genome for pea provides insight into legume genome evolution

Jonathan Kreplak et al.Sep 1, 2019
+42
P
M
J
We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel’s original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement. The first annotated chromosome-level reference genome assembly for pea, Gregor Mendel’s original genetic model, provides insights into legume genome evolution and the molecular basis of agricultural traits for pea improvement.
0
Citation415
0
Save
51

The giant diploid faba genome unlocks variation in a global protein crop

Murukarthick Jayakodi et al.Sep 26, 2022
+52
J
A
M
Abstract Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emission and loss of biodiversity. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value. Faba bean ( Vicia faba L.) has a high yield potential and is well-suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has grown to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, though with significant copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association (GWA) analysis to dissect the genetic basis of hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate improvement of sustainable protein production across Mediterranean, subtropical, and northern temperate agro-ecological zones.
51
Citation4
0
Save
1

Anatomy, transcription dynamics and evolution of wheat ribosomal RNA loci deciphered by a multi-omics approach

Zuzana Tulpová et al.Aug 31, 2020
+7
J
J
Z
Abstract Background and Aims Three out of four RNA components of ribosomes are encoded by 45S rDNA loci, whose transcripts are processed into 18S, 5.8S and 26S ribosomal RNAs. The loci are organized as long head-to-tail tandem arrays of nearly identical units spanning over several megabases of sequence. Due to this peculiar structure, the number of rRNA genes, their sequence composition and expression status remain unclear, especially in complex polyploid genomes harbouring multiple loci. Here we conducted a complex study to decipher structure and activity of both major and minor rRNA loci in hexaploid bread wheat ( Triticum aestivum ). Methods We employed an original, multi-omics approach, combining chromosome flow sorting and optical mapping with transcriptome and methylome sequencing. Key Results The former two techniques enabled unbiased quantification of rDNA units in particular loci of the wheat genome. Total number of rRNA genes organized in tandem arrays was 4388, with 64.1, 31.4, 3.9 and 0.7% located in short arms of chromosomes 6B, 1B, 5D and 1A, respectively. At the expression level, only 1B and 6B loci contributed to transcription at roughly 2:1 ratio. The 1B:6B ratio varied among five analysed tissues (embryo, coleoptile, root tip, primary leaf, mature leaf), being the highest (2.64:1) in mature leaf and lowest (1.72:1) in coleoptile. Cytosine methylation was considerably higher in CHG contexts in the silenced 5D locus compared to the active 1B and 6B loci. Conclusions A fine genomic organization and tissue-specific expression of rRNA loci were deciphered, for the first time, in a complex polyploid species. We documented various mechanisms of rRNA dosage control, including gene elimination and stable inactivation related to nucleolar subdominance of A and D-genome loci, and a subtle, developmentally regulated silencing of one of the major loci. The results are discussed in the context of wheat evolution and transcription regulation.
1
Citation4
0
Save
38

Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes

Jir̆ı́ Macas et al.Oct 26, 2022
+5
L
P
J
Abstract Centromeres in the legume genera Pisum and Lathyrus exhibit unique morphological characteristics, including extended primary constrictions and multiple separate domains of centromeric chromatin. These so-called metapolycentromeres resemble an intermediate form between monocentric and holocentric types, and therefore provide a great opportunity for studying the transitions between different types of centromere organizations. However, because of the exceedingly large and highly repetitive nature of metapolycentromeres, highly contiguous assemblies needed for these studies are lacking. Here, we report on the assembly and analysis of a 177.6 Mb region of pea ( Pisum sativum ) chromosome 6, including the 81.6 Mb centromere region (CEN6) and adjacent chromosome arms. Genes, DNA methylation profiles, and most of the repeats were uniformly distributed within the centromere, and their densities in CEN6 and chromosome arms were similar. The exception was an accumulation of satellite DNA in CEN6, where it formed multiple arrays up to 2 Mb in length. Centromeric chromatin, characterized by the presence of the CENH3 protein, was predominantly associated with arrays of three different satellite repeats; however, five other satellites present in CEN6 lacked CENH3. The presence of CENH3 chromatin was found to determine the spatial distribution of the respective satellites during the cell cycle. Finally, oligo-FISH painting experiments, performed using probes specifically designed to label the genomic regions corresponding to CEN6 in Pisum , Lathyrus , and Vicia species, revealed that metapolycentromeres evolved via the expansion of centromeric chromatin into neighboring chromosomal regions and the accumulation of novel satellite repeats. However, in some of these species, centromere evolution also involved chromosomal translocations and centromere repositioning. Significance Despite their conserved function, plant centromeres exhibit considerable variation in their morphology and sequence composition. For example, centromere activity is restricted to a single region in monocentric chromosomes, but is distributed along the entire chromosome length in holocentric chromosomes. The principles of centromere evolution that led to this variation are largely unknown, partly due to the lack of high-quality centromere assemblies. Here, we present an assembly of the pea metapolycentromere, a unique type of centromere that represents an intermediate stage between monocentric and holocentric organizations. This study not only provides a detailed insight into sequence organization, but also reveals possible mechanisms for the formation of the metapolycentromere through the spread of centromeric chromatin and the accumulation of satellite DNA.
38
Citation2
0
Save
21

Plasticity in centromere organization: Holocentromeres can consist of merely a few megabase-sized satellite arrays

Yi‐Tzu Kuo et al.Nov 25, 2022
+15
V
A
Y
Abstract The centromere is the chromosome region where the microtubules attach during cell division. In contrast to monocentric chromosomes with one centromere location, holocentric species usually distribute hundreds of centromere units along the entire chromatid. We assembled the chromosome-scale reference genome and analyzed the holocentromere and (epi)genome organization of the lilioid Chionographis japonica. Remarkably, each of its holocentric chromatids consists of only 7 to 11 evenly-spaced megabase-sized centromere-specific histone H3-positive units. These units contain satellite arrays of 23 and 28 bp-long monomers capable of forming palindromic structures. Like monocentric species, C. japonica forms distinctly clustered centromeres in chromocenters at interphase. Additionally, the large-scale eu- and heterochromatin arrangement differs between C. japonica and other known holocentric species. Using polymer simulations, we modeled the formation of prometaphase line-like holocentromeres from interphase centromere clusters. Our findings broaden the knowledge about the diversity of centromere organization, showing that holocentricity is not restricted to species with numerous and small centromere units.
21
Citation1
0
Save
37

Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta

Pavel Neumann et al.Jul 4, 2020
+7
J
L
P
Summary The parasitic genus Cuscuta (Convolvulaceae) is exceptional among plants with respect to centromere organization, including both monocentric and holocentric chromosomes, and substantial variation in genome size and chromosome number. We investigated 12 species representing the diversity of the genus in a phylogenetic context to reveal the molecular and evolutionary processes leading to diversification of their genomes. We measured genome sizes and investigated karyotypes and centromere organization using molecular cytogenetic techniques. We also performed low-pass whole genome sequencing and comparative analysis of repetitive DNA composition. A remarkable 102-fold variation in genome sizes (342–34,734 Mbp/1C) was detected for monocentric Cuscuta species, while genomes of holocentric species were of moderate sizes (533–1,545 Mbp/1C). The genome size variation was primarily driven by the differential accumulation of repetitive sequences. The transition to holocentric chromosomes in the subgenus Cuscuta was associated with loss of histone H2A phosphorylation and elimination of centromeric retrotransposons. In addition, the basic chromosome number (x) decreased from 15 to 7, presumably due to chromosome fusions. We demonstrated that the transition to holocentricity in Cuscuta was accompanied by significant changes in epigenetic marks, chromosome number and the repetitive DNA sequence composition.
37
Citation1
0
Save
14

Disruption of the standard kinetochore in holocentricCuscutaspecies

Pavel Neumann et al.Jan 4, 2023
+5
T
L
P
Abstract Segregation of chromosomes depends on the centromere. Most species are monocentric, with the centromere restricted to a single region per chromosome. In some organisms, monocentric organization changed to holocentric, in which the centromere activity is distributed over the entire chromosome length. However, the causes and consequences of this transition are poorly understood. Here, we show that the transition in the genus Cuscuta was associated with dramatic changes in the kinetochore, a protein complex that mediates the attachment of chromosomes to microtubules. We found that in holocentric Cuscuta species the KNL2 genes were lost; the CENP-C, KNL1, and ZWINT1 genes were truncated; the centromeric localization of CENH3, CENP-C, KNL1, MIS12, and NDC80 proteins was disrupted; and the spindle assembly checkpoint (SAC) was degenerated. Our results demonstrate that holocentric Cuscuta species lost the ability to form a standard kinetochore and do not employ SAC to control the attachment of microtubules to chromosomes.
0

KNL1 and NDC80 represent new universal markers for the detection of functional centromeres in plants

Ludmila Oliveira et al.Dec 23, 2023
+4
Y
P
L
Abstract Centromere is the chromosomal site of kinetochore assembly and microtubule attachment for chromosome segregation. Given its importance, markers that allow specific labeling of centromeric chromatin throughout the cell cycle and across all chromosome types are sought for facilitating various centromere studies. Antibodies against the N-terminal region of CENH3 are commonly used for this purpose, since CENH3 is the near-universal marker of functional centromeres. However, because the N-terminal region of CENH3 is highly variable among plant species, antibodies directed against this region usually function only in a small group of closely related species. As a more versatile alternative, we present here antibodies targeted to the conserved domains of two outer kinetochore proteins, KNL1 and NDC80. Sequence comparison of these domains across more than 350 plant species revealed a high degree of conservation, particularly within a six amino acid motif, FFGPVS in KNL1, suggesting that both antibodies would function in a wide range of plant species. This assumption was confirmed by immunolabeling experiments in angiosperm (monocot and dicot) and gymnosperm species, including those with mono-, holo-, and meta-polycentric chromosomes. In addition to centromere labeling on condensed chromosomes during cell division, both antibodies detected the corresponding regions in the interphase nuclei of most species tested. These results demonstrated that KNL1 and NDC80 are better suited for immunolabeling centromeres than CENH3, because antibodies against these proteins offer incomparably greater versatility across different plant species which is particularly convenient for studying the organization and function of the centromere in non-model species.
Load More