IL
Iben Lundgaard
Author with expertise in Brain Fluid Dynamics and Waste Clearance Mechanisms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
0
h-index:
23
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
11

Glymphatic function in the gyrencephalic brain

Nicholas Bèchet et al.Nov 10, 2020
I
N
N
ABSTRACT Identification of the perivascular compartment as the point of exchange between cerebrospinal fluid (CSF) and interstitial fluid mediating solute clearance in the brain, named the glymphatic system, has emerged as an important clearance pathway for neurotoxic peptides such as amyloid-beta. However, the foundational science of the glymphatic system is based on rodent studies. Here we investigated whether the glymphatic system exists in a large mammal with a highly gyrified brain. CSF penetration into the brain via perivascular pathways, a hallmark of glymphatic function, was seen throughout the gyrencephalic cortex and subcortical structures, validating the conservation of the glymphatic system in a large mammal. Macroscopic CSF tracer distribution followed the sulci and fissures showing that the gyri enhance CSF dispersion. Three-dimensional renditions from light sheet microscopy showed that CSF influx through perivascular spaces was 4-fold more extensive in the pig brain than in mice. This demonstrates the existence of an advanced solute transport system in the gyrencephalic brain that could be utilised therapeutically for enhancing waste clearance.
0

Microgliosis driven by palmitate exposure alters energy metabolism and extracellular vesicles release that impact behavior and systemic metabolism

Gabriela Paula et al.Apr 6, 2024
+5
R
B
G
Abstract Dietary patterns that include an excess of foods rich in saturated fat are associated with brain dysfunction. Although microgliosis has been proposed to play a key role in the development of brain dysfunction in diet-induced obesity (DIO), neuroinflammation with cytokine over-expression is often not always observed. Thus, mechanisms by which microglia contribute to brain impairment in DIO are uncertain. Using the BV2 cell model, we investigated the gliosis profile of microglia exposed to palmitate (200 µmol/L), a saturated fatty acid abundant in high-fat diet and in the brain of obese individuals. We observed that microglia respond to a 24-hour palmitate exposure with increased proliferation, and with a metabolic network rearrangement that favors energy production from glycolysis rather than oxidative metabolism, despite stimulated mitochondria biogenesis. In addition, while palmitate did not induce increased cytokine expression, it modified the protein cargo of released extracellular vesicles (EVs). When administered intra-cerebroventricularly to mice, EVs from palmitate-exposed microglia in vitro led to memory impairment, depression-like behavior, and glucose intolerance, when compared to mice receiving EVs from vehicle-treated microglia. We conclude that microglia exposed to palmitate can mediate brain dysfunction through the cargo of shed EVs.
0

Aquaporin-4 dependent glymphatic solute transport in rodent brain

Humberto Mestre et al.Nov 9, 2017
+14
W
B
H
The glymphatic system is a brain-wide metabolite clearance pathway, impairment of which in post-traumatic and ischemic brain or healthy aging is proposed to contribute to intracerebral accumulation of amyloid-β and tau proteins. Glymphatic perivascular influx of cerebrospinal fluid (CSF) depends upon the expression and perivascular localization of the astroglial water channel aquaporin-4 (AQP4). Prompted by a recent publication that failed to find an effect of Aqp4 knock- out on perivascular CSF tracer influx and interstitial fluid (ISF) tracer dispersion, four independent research groups have herein re-examined the importance of Aqp4 in glymphatic fluid transport. We concur in finding that CSF tracer influx, as well as fluorescently-tagged amyloid-β efflux, are significantly faster in wild-type mice than in three different transgenic lines featuring disruption of the Aqp4 gene and one line in which AQP4 expression lacks the critical perivascular localization (Snta1 knockout). These data validate the role of AQP4 in supporting fluid and solute transport and efflux in brain in accordance with the glymphatic system model.