RR
Rodrigo Romero
Author with expertise in Pancreatic Islet Dysfunction and Regeneration
Hospital Arnau de Vilanova, Memorial Sloan Kettering Cancer Center, Massachusetts Institute of Technology
+ 4 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
2
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
43

Modeling diverse genetic subtypes of lung adenocarcinoma with a next-generation alveolar type 2 organoid platform

Santiago Naranjo et al.Oct 24, 2023
+9
L
C
S
ABSTRACT Lung cancer is the leading cause of cancer-related death worldwide. Lung adenocarcinoma (LUAD), the most common histological subtype, accounts for 40% of all cases. While genetically engineered mouse models (GEMMs) recapitulate the histological progression and transcriptional evolution of human LUAD, they are slow and technically demanding. In contrast, cell line transplant models are fast and flexible, but are often derived from clonal idiosyncratic tumors that fail to capture the full spectrum of clinical disease. Organoid technologies provide a means to create next-generation cancer models that integrate the most relevant features of autochthonous and transplant-based systems, yet robust and faithful LUAD organoid platforms are currently lacking. Here, we describe optimized conditions to continuously expand murine alveolar type 2 cells (AT2), a prominent cell-of-origin for LUAD, in organoid culture. These organoids display canonical features of AT2 cells, including marker gene expression, the presence of lamellar bodies, and an ability to differentiate into the AT1 lineage. We used this system to develop flexible and versatile immunocompetent organoid-based models of KRAS and ALK- mutant LUAD. Notably, the resultant tumors closely resemble their autochthonous murine counterparts and human LUAD. In contrast to comparable organoid platforms, our system supports long-term maintenance of the AT2 cellular identity, providing unprecedented ease and reliability to study AT2 and LUAD biology in vitro and in vivo .
43
Citation2
0
Save
0

The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1

Rodrigo Romero et al.May 28, 2024
+22
T
T
R
Lineage plasticity is a recognized hallmark of cancer progression that can shape therapy outcomes. The underlying cellular and molecular mechanisms mediating lineage plasticity remain poorly understood. Here, we describe a versatile in vivo platform to identify and interrogate the molecular determinants of neuroendocrine lineage transformation at different stages of prostate cancer progression. Adenocarcinomas reliably develop following orthotopic transplantation of primary mouse prostate organoids acutely engineered with human-relevant driver alterations (e.g., Rb1 -/- ; Trp53 -/- ; cMyc + or Pten -/- ; Trp53 -/- ; cMyc + ), but only those with Rb1 deletion progress to ASCL1+ neuroendocrine prostate cancer (NEPC), a highly aggressive, androgen receptor signaling inhibitor (ARSI)-resistant tumor. Importantly, we show this lineage transition requires a native in vivo microenvironment not replicated by conventional organoid culture. By integrating multiplexed immunofluorescence, spatial transcriptomics and PrismSpot to identify cell type-specific spatial gene modules, we reveal that ASCL1+ cells arise from KRT8+ luminal epithelial cells that progressively acquire transcriptional heterogeneity, producing large ASCL1 + ;KRT8 - NEPC clusters. Ascl1 loss in established NEPC results in transient tumor regression followed by recurrence; however, Ascl1 deletion prior to transplantation completely abrogates lineage plasticity, yielding adenocarcinomas with elevated AR expression and marked sensitivity to castration. The dynamic feature of this model reveals the importance of timing of therapies focused on lineage plasticity and offers a platform for identification of additional lineage plasticity drivers.