AB
Andrea Brand
Author with expertise in Notch Signaling Pathway in Development and Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(75% Open Access)
Cited by:
12,041
h-index:
55
/
i10-index:
98
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Targeted gene expression as a means of altering cell fates and generating dominant phenotypes

Andrea Brand et al.Jun 1, 1993
ABSTRACT We have designed a system for targeted gene expression that allows the selective activation of any cloned gene in a wide variety of tissueand cell-specific patterns. The gene encoding the yeast transcriptional activator GAL4 is inserted randomly into the Drosophila genome to drive GAL4 expression from one of a diverse array of genomic enhancers. It is then possible to introduce a gene containing GAL4 binding sites within its promoter, to activate it in those cells where GAL4 is expressed, and to observe the effect of this directed misexpression on development. We have used GAL4-directed transcription to expand the domain of embryonic expression of the homeobox protein even-skipped. We show that even-skipped represses wingless and transforms cells that would normally secrete naked cuticle into denticle secreting cells. The GAL4 system can thus be used to study regulatory interactions during embryonic development. In adults, targeted expression can be used to generate dominant phenotypes for use in genetic screens. We have directed expression of an activated form of the Dras2 protein, resulting in dominant eye and wing defects that can be used in screens to identify other members of the Dras2 signal transduction pathway.
0
Citation9,409
0
Save
0

folded gastrulation, cell shape change and the control of myosin localization

Rachel Dawes-Hoang et al.Aug 25, 2005
The global cell movements that shape an embryo are driven by intricate changes to the cytoarchitecture of individual cells. In a developing embryo,these changes are controlled by patterning genes that confer cell identity. However, little is known about how patterning genes influence cytoarchitecture to drive changes in cell shape. In this paper, we analyze the function of the folded gastrulation gene (fog), a known target of the patterning gene twist. Our analysis of fog function therefore illuminates a molecular pathway spanning all the way from patterning gene to physical change in cell shape. We show that secretion of Fog protein is apically polarized, making this the earliest polarized component of a pathway that ultimately drives myosin to the apical side of the cell. We demonstrate that fog is both necessary and sufficient to drive apical myosin localization through a mechanism involving activation of myosin contractility with actin. We determine that this contractility driven form of localization involves RhoGEF2 and the downstream effector Rho kinase. This distinguishes apical myosin localization from basal myosin localization, which we find not to require actinomyosin contractility or FOG/RhoGEF2/Rho-kinase signaling. Furthermore, we demonstrate that once localized apically, myosin continues to contract. The force generated by continued myosin contraction is translated into a flattening and constriction of the cell surface through a tethering of the actinomyosin cytoskeleton to the apical adherens junctions. Our analysis of fog function therefore provides a direct link from patterning to cell shape change.
0
Citation402
0
Save
47

An organoid CRISPRi screen revealed that SOX9 primes human fetal lung tip progenitors to receive WNT and RTK signals

Dawei Sun et al.Jan 27, 2022
ABSTRACT The balance between self-renewal and differentiation in human fetal lung epithelial progenitors controls the size and function of the adult organ. Moreover, progenitor cell gene regulation networks are employed by both regenerating and malignant lung cells, where modulators of their effects could potentially be of therapeutic value. Details of the molecular networks controlling human lung progenitor self-renewal remain unknown. We performed the first CRISPRi screen in primary human lung organoids to identify transcription factors controlling progenitor self-renewal. We show that SOX9 promotes proliferation of lung progenitors and inhibits precocious airway differentiation. Moreover, by identifying direct transcriptional targets using Targeted DamID we place SOX9 at the centre of a transcriptional network which amplifies WNT and RTK signalling to stabilise the progenitor cell state. In addition, the proof-of-principle CRISPRi screen and Targeted DamID tools establish a new approach for using primary human organoids to elucidate detailed functional mechanisms underlying normal development and disease. Highlights A pooled CRISPRi screen in human fetal lung organoids identified transcription factors controlling progenitor cell self-renewal. SOX9 promotes tip progenitor cell proliferation and supresses precocious airway differentiation. Targeted DamID (TaDa) identified SOX9 direct binding targets, revealing that SOX9 lies at the intersection of WNT and RTK signalling. SOX9 and ETVs co-regulate the human fetal lung progenitor self-renewal programme.
47
Citation4
0
Save
Load More