GW
Grit Walther
Author with expertise in Diversity and Evolution of Fungal Pathogens
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
330
h-index:
27
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

One stop shop: backbones trees for important phytopathogenic genera: I (2014)

Kevin Hyde et al.Jul 1, 2014
+37
S
R
K
Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper.
0

Spirolactone, an unprecedented antifungalβ-lactone spiroketal macrolide fromStreptomyces iranensis

Zhuan-Ying Yang et al.Apr 17, 2024
+15
E
Z
Z
Abstract Fungal infections pose a great threat to public health. There are only four classes of antifungals that have limitations due to high toxicity, drug-drug interactions, and emerging drug-resistance. Streptomyces spp. represent an important source of antimicrobial substances, notably including the antifungal agent amphotericin B. The rapamycin-producer Streptomyces iranensis displayed strong antifungal activities against Aspergillus . Revisiting its genome revealed several intriguing biosynthetic gene clusters, including one unparalleled Type I polyketide synthase, which codes for uncharacterized metabolites. The identification of a novel macrolide spirolactone ( 1 ) and its biosynthetic gene cluster was facilitated through CRISPR-based gene editing, HR-ESI-MS analysis, followed by fermentation and purification processes. Their structures and absolute configurations were confirmed by NMR, MS and X-ray crystallography. Spirolactone harbors an undescribed carbon skeleton with 13 chiral centers, featuring a rare β -lactone moiety, a [6,6]-spiroketal ring, and an unprecedented 7-oxo-octylmalonyl-CoA extender unit incorporated by a potential novel Crotonyl -CoA carboxylase/reductase. Spirolactone displayed profound antifungal effects against numerous fungal pathogens, e.g. the genus Talaromyces and several sections of Aspergillus including clinically relevant species such as Aspergillus niger and A. tubingensis (section Nigri), A. terreus (section Terrei) and the azol-resistant A. calidoustus (section Usti). Proteomics analysis revealed spirolactone potentially disrupted the integrity of fungal cell walls and induced the expression of stress-response proteins in A. niger . Spirolactone represents a new class of potential drug candidate to combat fungal infections.
11

RNA-based sensitive fungal pathogen detection

Julia Micheel et al.Jan 1, 2023
+4
A
F
J
Detecting fungal pathogens, a major cause of severe systemic infections, remains challenging due to the difficulty and time-consuming nature of diagnostic methods. This delay in identification hinders targeted treatment decisions and may lead to unnecessary use of broad-spectrum antibiotics. To expedite treatment initiation, one promising approach is to directly detect pathogen nucleic acids such as DNA, which is often preferred to RNA because of its inherent stability. However, a higher number of RNA molecules per cell makes RNA a more promising diagnostic target which is particularly prominent for highly expressed genes such as rRNA. Here, we investigated the utility of a minimal input-specialized reverse transcription protocol to increase diagnostic sensitivity. This proof-of-concept study demonstrates that fungal rRNA detection by the minimal input protocol is drastically more sensitive compared to detection of genomic DNA even with high levels of human RNA background. This approach can detect several of the most relevant human pathogenic fungal genera, such as Aspergillus, Candida, and Fusarium and thus represents a powerful, cheap, and easily adaptable addition to currently available diagnostic assays.