KH
Kayla Hannon
Author with expertise in Biomedical Ontologies and Text Mining
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
2
h-index:
4
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Population modeling with machine learning can enhance measures of mental health - Open-Data Replication

Ty Easley et al.Apr 7, 2022
+2
K
R
T
Abstract Efforts to predict trait phenotypes based on functional MRI data from large cohorts have been hampered by low prediction accuracy and/or small effect sizes. Although these findings are highly replicable, the small effect sizes are somewhat surprising given the presumed brain basis of phenotypic traits such as neuroticism and fluid intelligence. We aim to replicate previous work and additionally test multiple data manipulations that may improve prediction accuracy by addressing data pollution challenges. Specifically, we added additional fMRI features, averaged the target phenotype across multiple measurements to obtain more accurate estimates of the underlying trait, balanced the target phenotype’s distribution through undersampling of majority scores, and identified data-driven subtypes to investigate the impact of between-participant heterogeneity. Our results replicated prior results from Dadi et a (2021) in a larger sample. Each data manipulation further led to small but consistent improvements in prediction accuracy, which were largely additive when combining multiple data manipulations. Combining data manipulations (i.e., extended fMRI features, averaged target phenotype, balanced target phenotype distribution) led to a three-fold increase in prediction accuracy for fluid intelligence compared to prior work. These findings highlight the benefit of several relatively easy and low-cost data manipulations, which may positively impact future work.
0

Opaque Ontology: Neuroimaging Classification of ICD-10 Diagnostic Groups in the UK Biobank

Ty Easley et al.Apr 19, 2024
+2
X
P
T
Background: The use of machine learning to classify diagnostic cases versus controls defined based on diagnostic ontologies such as the ICD-10 from neuroimaging features is now commonplace across a wide range of diagnostic fields. However, transdiagnostic comparisons of such classifications are lacking. Such transdiagnostic comparisons are important to establish the specificity of classification models, set benchmarks, and assess the value of diagnostic ontologies. Results: We investigated case-control classification accuracy in 17 different ICD-10 diagnostic groups from Chapter V (mental and behavioral disorders) and Chapter VI (diseases of the nervous system) using data from the UK Biobank. Classification models were trained using either neuroimaging (structural or functional brain MRI feature sets) or socio-demographic features. Random forest classification models were adopted using rigorous shuffle splits to estimate stability as well as accuracy of case-control classifications. Diagnostic classification accuracies were benchmarked against age classification (oldest versus youngest) from the same feature sets and against additional classifier types (K-nearest neighbors and linear support vector machine). In contrast to age classification accuracy, which was high for all feature sets, few ICD-10 diagnostic groups were classified significantly above chance (namely, demyelinating diseases based on structural neuroimaging features, and depression based on socio-demographic and functional neuroimaging features). Conclusion: These findings highlight challenges with the current disease classification system, leading us to recommend caution with the use of ICD-10 diagnostic groups as target labels in brain-based disease prediction studies.