KM
Kianna Maydell
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
16
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Topologically Associating Domain Boundaries are Commonly Required for Normal Genome Function

Sudha Rajderkar et al.May 7, 2021
+23
M
Y
S
Summary Topologically associating domain (TAD) boundaries are thought to partition the genome into distinct regulatory territories. Anecdotal evidence suggests that their disruption may interfere with normal gene expression and cause disease phenotype 1–3 , but the overall extent to which this occurs remains unknown. Here we show that TAD boundary deletions commonly disrupt normal genome function in vivo . We used CRISPR genome editing in mice to individually delete eight TAD boundaries (11-80kb in size) from the genome in mice. All deletions examined resulted in at least one detectable molecular or organismal phenotype, which included altered chromatin interactions or gene expression, reduced viability, and anatomical phenotypes. For 5 of 8 (62%) loci examined, boundary deletions were associated with increased embryonic lethality or other developmental phenotypes. For example, a TAD boundary deletion near Smad3/Smad6 caused complete embryonic lethality, while a deletion near Tbx5/Lhx5 resulted in a severe lung malformation. Our findings demonstrate the importance of TAD boundary sequences for in vivo genome function and suggest that noncoding deletions affecting TAD boundaries should be carefully considered for potential pathogenicity in clinical genetics screening.
2
Citation9
0
Save
5

Uncovering Hidden Enhancers Through Unbiased In Vivo Testing

Brandon Mannion et al.May 30, 2022
+23
S
M
B
Abstract Transcriptional enhancers are a predominant class of noncoding regulatory elements that activate cell type-specific gene expression. Tissue-specific enhancer-associated chromatin signatures have proven useful to identify candidate enhancer elements at a genome-wide scale, but their sensitivity for the comprehensive detection of all enhancers active in a given tissue in vivo remains unclear. Here we show that a substantial proportion of in vivo enhancers are hidden from discovery by conventional chromatin profiling methods. In an initial comparison of over 1,200 in vivo validated tissue-specific enhancers with tissue-matched mouse developmental epigenome data, 14% (n=286) of active enhancers did not show canonical enhancer-associated chromatin signatures in the tissue in which they are active. To assess the prevalence of enhancers not detectable by conventional chromatin profiling approaches in more detail, we used a high throughput transgenic enhancer reporter assay to systematically screen over 1.3 Mb of mouse genomic sequence at two critical developmental loci, assessing a total of 281 consecutive 5kb regions for in vivo enhancer activity in mouse embryos. We observed reproducible enhancer-reporter activity in 88 tissue-specific elements, 26% of which did not show canonical enhancer-associated chromatin signatures in the corresponding tissues. Overall, we find these hidden enhancers are indistinguishable from marked enhancers based on levels of evolutionary conservation, enrichment of transcription factor families, and genomic positioning relative to putative target genes. In combination, our retrospective and prospective studies assessed only 0.1% of the mouse genome and identified 309 tissue-specific enhancers that are hidden from current chromatin-based enhancer identification approaches. Our findings suggest the existence of tens of thousands of active enhancers throughout the genome that remain undetected by current chromatin profiling approaches and are an unappreciated source of additional genome function of import in interpreting growing whole human genome sequencing data.
5
Citation6
0
Save
4

Cell Type- and Tissue-specific Enhancers in Craniofacial Development

Sudha Rajderkar et al.Jun 26, 2023
+29
L
Y
S
The genetic basis of craniofacial birth defects and general variation in human facial shape remains poorly understood. Distant-acting transcriptional enhancers are a major category of non-coding genome function and have been shown to control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development1-3. However, a lack of accurate maps of the genomic location and cell type-specific in vivo activities of all craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combined histone modification and chromatin accessibility profiling from different stages of human craniofacial development with single-cell analyses of the developing mouse face to create a comprehensive catalogue of the regulatory landscape of facial development at tissue- and single cell-resolution. In total, we identified approximately 14,000 enhancers across seven developmental stages from weeks 4 through 8 of human embryonic face development. We used transgenic mouse reporter assays to determine the in vivo activity patterns of human face enhancers predicted from these data. Across 16 in vivo validated human enhancers, we observed a rich diversity of craniofacial subregions in which these enhancers are active in vivo. To annotate the cell type specificities of human-mouse conserved enhancers, we performed single-cell RNA-seq and single-nucleus ATAC-seq of mouse craniofacial tissues from embryonic days e11.5 to e15.5. By integrating these data across species, we find that the majority (56%) of human craniofacial enhancers are functionally conserved in mice, providing cell type- and embryonic stage-resolved predictions of their in vivo activity profiles. Using retrospective analysis of known craniofacial enhancers in combination with single cell-resolved transgenic reporter assays, we demonstrate the utility of these data for predicting the in vivo cell type specificity of enhancers. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.
4
Citation1
0
Save
0

Massively parallel reporter assays and mouse transgenic assays provide complementary information about neuronal enhancer activity

Michael Kosicki et al.Apr 23, 2024
+14
K
R
M
Genetic studies find hundreds of thousands of noncoding variants associated with psychiatric disorders. Massively parallel reporter assays (MPRAs) and in vivo transgenic mouse assays can be used to assay the impact of these variants. However, the relevance of MPRAs to in vivo function is unknown and transgenic assays suffer from low throughput. Here, we studied the utility of combining the two assays to study the impact of non-coding variants. We carried out an MPRA on over 50,000 sequences derived from enhancers validated in transgenic mouse assays and from multiple fetal neuronal ATAC-seq datasets. We also tested over 20,000 variants, including synthetic mutations in highly active neuronal enhancers and 177 common variants associated with psychiatric disorders. Variants with a high impact on MPRA activity were further tested in mice. We found a strong and specific correlation between MPRA and mouse neuronal enhancer activity including changes in neuronal enhancer activity in mouse embryos for variants with strong MPRA effects. Mouse assays also revealed pleiotropic variant effects that could not be observed in MPRA. Our work provides a large catalog of functional neuronal enhancers and variant effects and highlights the effectiveness of combining MPRAs and mouse transgenic assays.
0

Mutagenesis Sensitivity Mapping of Human Enhancers In Vivo

Michael Kosicki et al.Sep 8, 2024
+14
A
B
M
Distant-acting enhancers are central to human development. However, our limited understanding of their functional sequence features prevents the interpretation of enhancer mutations in disease. Here, we determined the functional sensitivity to mutagenesis of human developmental enhancers in vivo. Focusing on seven enhancers active in the developing brain, heart, limb and face, we created over 1700 transgenic mice for over 260 mutagenized enhancer alleles. Systematic mutation of 12-basepair blocks collectively altered each sequence feature in each enhancer at least once. We show that 69% of all blocks are required for normal in vivo activity, with mutations more commonly resulting in loss (60%) than in gain (9%) of function. Using predictive modeling, we annotated critical nucleotides at base-pair resolution. The vast majority of motifs predicted by these machine learning models (88%) coincided with changes to in vivo function, and the models showed considerable sensitivity, identifying 59% of all functional blocks. Taken together, our results reveal that human enhancers contain a high density of sequence features required for their normal in vivo function and provide a rich resource for further exploration of human enhancer logic.