BG
Bert Groot
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(85% Open Access)
Cited by:
11,438
h-index:
74
/
i10-index:
187
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

CHARMM36m: an improved force field for folded and intrinsically disordered proteins

Jing Huang et al.Nov 7, 2016
+5
G
S
J
An all-atom protein force field, CHARMM36m, offers improved accuracy for simulating intrinsically disordered peptides and proteins. The all-atom additive CHARMM36 protein force field is widely used in molecular modeling and simulations. We present its refinement, CHARMM36m ( http://mackerell.umaryland.edu/charmm_ff.shtml ), with improved accuracy in generating polypeptide backbone conformational ensembles for intrinsically disordered peptides and proteins.
0

Molecular Anatomy of a Trafficking Organelle

Shigeo Takamori et al.Nov 1, 2006
+19
K
M
S

Summary

 Membrane traffic in eukaryotic cells involves transport of vesicles that bud from a donor compartment and fuse with an acceptor compartment. Common principles of budding and fusion have emerged, and many of the proteins involved in these events are now known. However, a detailed picture of an entire trafficking organelle is not yet available. Using synaptic vesicles as a model, we have now determined the protein and lipid composition; measured vesicle size, density, and mass; calculated the average protein and lipid mass per vesicle; and determined the copy number of more than a dozen major constituents. A model has been constructed that integrates all quantitative data and includes structural models of abundant proteins. Synaptic vesicles are dominated by proteins, possess a surprising diversity of trafficking proteins, and, with the exception of the V-ATPase that is present in only one to two copies, contain numerous copies of proteins essential for membrane traffic and neurotransmitter uptake.
0
Paper
Citation2,240
0
Save
0

g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates

Jochen Hub et al.Nov 16, 2010
D
B
J
The Weighted Histogram Analysis Method (WHAM) is a standard technique used to compute potentials of mean force (PMFs) from a set of umbrella sampling simulations. Here, we present a new WHAM implementation, termed g_wham, which is distributed freely with the GROMACS molecular simulation suite. g_wham estimates statistical errors using the technique of bootstrap analysis. Three bootstrap methods are supported: (i) bootstrapping new trajectories based on the umbrella histograms, (ii) bootstrapping of complete histograms, and (iii) Bayesian bootstrapping of complete histograms, that is, bootstrapping via the assignment of random weights to the histograms. Because methods ii and iii consider only complete histograms as independent data points, these methods do not require the accurate calculation of autocorrelation times. We demonstrate that, given sufficient sampling, bootstrapping new trajectories allows for an accurate error estimate. In the presence of long autocorrelations, however, (Bayesian) bootstrapping of complete histograms yields a more reliable error estimate, whereas bootstrapping of new trajectories may underestimate the error. In addition, we emphasize that the incorporation of autocorrelations into WHAM reduces the bias from limited sampling, in particular, when computing periodic PMFs in inhomogeneous systems such as solvated lipid membranes or protein channels.
0

Recognition Dynamics Up to Microseconds Revealed from an RDC-Derived Ubiquitin Ensemble in Solution

Cyril Dominguez et al.Jun 12, 2008
+7
C
N
C
Protein dynamics are essential for protein function, and yet it has been challenging to access the underlying atomic motions in solution on nanosecond-to-microsecond time scales. We present a structural ensemble of ubiquitin, refined against residual dipolar couplings (RDCs), comprising solution dynamics up to microseconds. The ensemble covers the complete structural heterogeneity observed in 46 ubiquitin crystal structures, most of which are complexes with other proteins. Conformational selection, rather than induced-fit motion, thus suffices to explain the molecular recognition dynamics of ubiquitin. Marked correlations are seen between the flexibility of the ensemble and contacts formed in ubiquitin complexes. A large part of the solution dynamics is concentrated in one concerted mode, which accounts for most of ubiquitin's molecular recognition heterogeneity and ensures a low entropic complex formation cost.
0

Water Permeation Across Biological Membranes: Mechanism and Dynamics of Aquaporin-1 and GlpF

Bert Groot et al.Dec 14, 2001
H
B
“Real time” molecular dynamics simulations of water permeation through human aquaporin-1 (AQP1) and the bacterial glycerol facilitator GlpF are presented. We obtained time-resolved, atomic-resolution models of the permeation mechanism across these highly selective membrane channels. Both proteins act as two-stage filters: Conserved fingerprint [asparagine-proline-alanine (NPA)] motifs form a selectivity-determining region; a second (aromatic/arginine) region is proposed to function as a proton filter. Hydrophobic regions near the NPA motifs are rate-limiting water barriers. In AQP1, a fine-tuned water dipole rotation during passage is essential for water selectivity. In GlpF, a glycerol-mediated “induced fit” gating motion is proposed to generate selectivity for glycerol over water.
0

Mechanism of selectivity in aquaporins and aquaglyceroporins

Jochen Hub et al.Jan 18, 2008
B
J
Aquaporins and aquaglyceroporins form a family of pore proteins that facilitate the efficient and selective flux of small solutes across biological membranes. We studied the selectivity of aquaporin-1 (AQP1) and the bacterial glycerol facilitator, GlpF, for O 2 , CO 2 , NH 3 , glycerol, urea, and water. Using molecular dynamics simulations, we calculated potentials of mean force for solute permeation along the aquaporin channels and compared them with the alternative pathway across the lipid bilayer. For small solutes permeating through AQP1, a remarkable anticorrelation between permeability and solute hydrophobicity was observed, whereas the opposite trend was observed for permeation through the membrane. This finding renders AQP1 a selective filter for small polar solutes, whereas GlpF was found to be highly permeable for small solutes and permeable for larger solutes. Surprisingly, not solute-channel but water-channel interactions were found to be the key determinant underlying the selectivity mechanism of aquaporins. Hence, a hydrophobic effect, together with steric restraints, determines the selectivity of aquaporins.
0

Structural Ensembles of Intrinsically Disordered Proteins Depend Strongly on Force Field: A Comparison to Experiment

Sarah Rauscher et al.Oct 9, 2015
+3
M
V
S
Intrinsically disordered proteins (IDPs) are notoriously challenging to study both experimentally and computationally. The structure of IDPs cannot be described by a single conformation but must instead be described as an ensemble of interconverting conformations. Atomistic simulations are increasingly used to obtain such IDP conformational ensembles. Here, we have compared the IDP ensembles generated by eight all-atom empirical force fields against primary small-angle X-ray scattering (SAXS) and NMR data. Ensembles obtained with different force fields exhibit marked differences in chain dimensions, hydrogen bonding, and secondary structure content. These differences are unexpectedly large: changing the force field is found to have a stronger effect on secondary structure content than changing the entire peptide sequence. The CHARMM 22* ensemble performs best in this force field comparison: it has the lowest error in chemical shifts and J-couplings and agrees well with the SAXS data. A high population of left-handed α-helix is present in the CHARMM 36 ensemble, which is inconsistent with measured scalar couplings. To eliminate inadequate sampling as a reason for differences between force fields, extensive simulations were carried out (0.964 ms in total); the remaining small sampling uncertainty is shown to be much smaller than the observed differences. Our findings highlight how IDPs, with their rugged energy landscapes, are highly sensitive test systems that are capable of revealing force field deficiencies and, therefore, contributing to force field development.
0

More bang for your buck: Improved use of GPU nodes for GROMACS 2018

Carsten Kutzner et al.Jul 1, 2019
+3
M
S
C
We identify hardware that is optimal to produce molecular dynamics (MD) trajectories on Linux compute clusters with the GROMACS 2018 simulation package. Therefore, we benchmark the GROMACS performance on a diverse set of compute nodes and relate it to the costs of the nodes, which may include their lifetime costs for energy and cooling. In agreement with our earlier investigation using GROMACS 4.6 on hardware of 2014, the performance to price ratio of consumer GPU nodes is considerably higher than that of CPU nodes. However, with GROMACS 2018, the optimal CPU to GPU processing power balance has shifted even more toward the GPU. Hence, nodes optimized for GROMACS 2018 and later versions enable a significantly higher performance to price ratio than nodes optimized for older GROMACS versions. Moreover, the shift toward GPU processing allows to cheaply upgrade old nodes with recent GPUs, yielding essentially the same performance as comparable brand‐new hardware. © 2019 Wiley Periodicals, Inc.
28

Substrate Transport and Specificity in a Phospholipid Flippase

Yong Wang et al.Jun 26, 2020
+5
M
J
Y
Abstract Type 4 P-type ATPases are lipid flippases which help maintain asymmetric phospholipid distribution in eukaryotic membranes by driving unidirectional translocation of phospholipid substrates. Recent cryo-EM and crystal structures have provided a detailed view of flippases, and we here use molecular dynamics simulations to study the first steps of phospholipid transport and lipid substrate specificity. Our simulations and new cryo-EM structure shows phospholipid binding to a groove and subsequent movement towards the centre of the membrane, and reveal a preference for phosphatidylserine lipids. We find that only the lipid head group stays in the groove while the lipid tails remain in the membrane, thus visualizing how flippases have evolved to transport large substrates. The flippase also induces deformation and thinning of the outer leaflet facilitating lipid recruitment. Our simulations provide insight into substrate binding to flippases and suggest that multiple sites and steps in the functional cycle contribute to substrate selectivity.
28
Paper
Citation12
0
Save
5

The 3D structure of lipidic fibrils of α-synuclein

Benedikt Frieg et al.Mar 2, 2022
+8
C
L
B
Abstract α-synuclein (αSyn) is abundant in neurons, but its misfolding and abnormal fibrillization are associated with severe neurodegenerative diseases. Although interactions between αSyn and phospholipid membranes are relevant during αSyn fibril assembly, insights into the interactions of αSyn fibrils with phospholipids have remained elusive. Here, we present six novel polymorphic atomic structures of αSyn fibrils aggregated in the presence of phospholipids. The structures reveal that phospholipids favor a novel protofilament fold, mediate an unusual arrangement of protofilaments, and fill the central cavities between the protofilaments. These findings provide a structural rationale for fibril-induced lipid extraction, a mechanism likely to be involved in the development of α-synucleinopathies.
5
Citation3
0
Save
Load More