TK
Thomas Koch
Author with expertise in Structure and Function of Nicotinic Receptors
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
1
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Prey Shifts Drive Venom Evolution in Cone Snails

Thomas Koch et al.Jun 24, 2024
+6
P
S
T
Abstract Venom systems are complex traits that have independently emerged multiple times in diverse plant and animal phyla. Within each venomous lineage there typically exists interspecific variation in venom composition where several factors have been proposed as drivers of variation, including phylogeny and diet. Understanding these factors is of broad biological interest and has implications for the development of antivenom therapies and venom-based drug discovery. Because of their high species richness and the presence of several major evolutionary prey shifts, venomous marine cone snails (genus Conus) provide an ideal system to investigate drivers of interspecific venom variation. Here, by analyzing the venom gland expression profiles of ∼3,000 toxin genes from 42 species of cone snail, we elucidate the role of prey-specific selection pressures in shaping venom variation. By analyzing overall venom composition and individual toxin structures, we demonstrate that the shifts from vermivory to piscivory in Conus are complemented by distinct changes in venom composition independent of phylogeny. In vivo injections of venom from piscivorous cone snails in fish further showed a higher potency compared with venom of nonpiscivores demonstrating a selective advantage. Together, our findings provide compelling evidence for the role of prey shifts in directing the venom composition of cone snails and expand our understanding of the mechanisms of venom variation and diversification.
0
Citation1
0
Save
0

Venom-inspired somatostatin receptor 4 (SSTR4) agonists as new drug leads for peripheral pain conditions

Walden Bjørn‐Yoshimoto et al.Apr 30, 2024
+13
T
I
W
Persistent pain affects one in five people worldwide, often with severely debilitating consequences. Current treatment options, which can be effective for mild or acute pain, are ill-suited for moderate-to-severe persistent pain, resulting in an urgent need for new therapeutics. In recent years, the somatostatin receptor 4 (SSTR4), which is expressed in sensory neurons of the peripheral nervous system, has emerged as a promising target for pain relief. However, the presence of several closely related receptors with similar ligand-binding surfaces complicates the design of receptor-specific agonists. In this study, we report the discovery of a potent and selective SSTR4< peptide, consomatin Fj1, derived from extensive venom gene datasets from marine cone snails. Consomatin Fj1 is a mimetic of the endogenous hormone somatostatin and contains a minimized binding motif that provides stability and drives peptide selectivity. Peripheral administration of synthetic consomatin Fj1 provided analgesia in mouse models of postoperative and neuropathic pain. Using structure-activity studies, we designed and functionally evaluated several Fj1 analogs, resulting in compounds with improved potency and selectivity. Our findings present a novel avenue for addressing persistent pain through the design of venom-inspired SSTR4-selective pain therapeutics.
2

Discovery of Novel Bilaterian Signaling Peptides Using Cone Snail Toxins

Thomas Koch et al.Aug 5, 2022
+4
R
J
T
Abstract Peptide hormones and neuropeptides form a diverse class of signaling molecules that control essential processes in animals. Despite several breakthroughs in peptide discovery, many signaling peptides remain undiscovered. Recently, we demonstrated the use of somatostatin-like toxins from cone snail venom to identify homologous signaling peptides in prey. Here, we demonstrate that this toxin-based approach can be systematically applied to the discovery of other unknown bilaterian signaling peptides. Using large sequencing datasets, we searched for homologies between cone snail toxins and putative peptides from several important model organisms representing the snails’ prey. We identified five toxin families that share strong similarities with previously unknown signaling peptides from mollusks and annelids. One of the peptides was also identified in rotifers, brachiopods, platyhelminths, and arthropods, and another was found to be structurally related to crustacean hyperglycemic hormone, a peptide not previously known to exist in Spiralia. Based on several lines of evidence we propose that these signaling peptides not only exist but serve important physiological functions. Finally, we propose that the discovery pipeline developed here can be more broadly applied to other systems in which one organism has evolved molecules to manipulate the physiology of another.
11

Identification of a sensory neuron Cav2.3 inhibitor within a new superfamily of macro-conotoxins

Celeste Hackney et al.Jul 4, 2022
+15
J
B
C
Abstract Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, that defines a new class of conotoxins evolutionarily related to the well-known con-ikot-ikots and two additional conotoxin classes not previously described. The crystal structure of recombinant Mu8.1 displays a saposin-like fold and shows structural similarity with con-ikot-ikot. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of voltage-gated ion channels, Mu8.1 preferentially inhibited the R-type (Cav2.3) calcium channel. Ca 2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of Cav2.3 and voltage-gated K + (Kv4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing Cav2.3. Importantly, this multidisciplinary study demonstrates the feasibility of large, disulfide-rich venom-component investigation, an endeavor that will lead to the discovery of novel structures and functions in the previously underexplored group of macro-conotoxins.
1

Reconstructing the Origins of a Neuropeptide Signaling System Using the Accelerated Evolution of Biodiverse Cone Snail Venoms

Thomas Koch et al.Nov 6, 2021
+7
P
I
T
Abstract Somatostatin and its related peptides (SSRPs) form an important family of hormones with diverse physiological roles. The ubiquitous presence of SSRPs in vertebrates and several invertebrate deuterostomes suggests an ancient origin of the SSRP signaling system. However, the existence of SSRP genes outside of deuterostomes has not been established and the evolutionary history of this signaling system remains poorly understood. Our recent discovery of SSRP-like toxins (consomatins) in venomous marine cone snails ( Conus) suggested the presence of a homologous signaling system in mollusks and potentially other protostomes. Here we identify the molluscan SSRP-like signaling gene that gave rise to the consomatin family. Following recruitment into venom, consomatin genes experience strong positive selection and repeated gene duplications resulting in the formation of a hyper-diverse family of venom peptides. Intriguingly, the largest number of consomatins was found in worm-hunting species (> 400 sequences), indicating a homologous system in annelids, another large protostome phylum. Comprehensive sequence mining enabled the identification of orthologous SSRP-like sequences (and their corresponding orphan receptor) in annelids and several other protostome phyla. These results establish the existence of SSRP-like sequences in many major branches of bilaterians, including xenacoelomorphs, a phylum believed to have emerged before the divergence of protostomes and deuterostomes, ~ 600 My ago. Finally, having a large set of predator-prey SSRP sequences available, we show that while the cone snail’s signaling SSRP-like genes are under purifying selection, in striking contrast, the consomatin genes experience rapid directional selection to target receptors in a changing mix of prey.