RC
Romain Cartoni
Author with expertise in Mitochondrial Dynamics and Reactive Oxygen Species Regulation
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
744
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise

Romain Cartoni et al.Jun 17, 2005
+10
M
B
R
Mitochondrial impairment is hypothesized to contribute to the pathogenesis of insulin resistance. Mitofusin (Mfn) proteins regulate the biogenesis and maintenance of the mitochondrial network, and when inactivated, cause a failure in the mitochondrial architecture and decreases in oxidative capacity and glucose oxidation. Exercise increases muscle mitochondrial content, size, oxidative capacity and aerobic glucose oxidation. To address if Mfn proteins are implicated in these exercise‐induced responses, we measured Mfn1 and Mfn2 mRNA levels, pre‐, post‐, 2 and 24 h post‐exercise. Additionally, we measured the expression levels of transcriptional regulators that control mitochondrial biogenesis and functions, including PGC‐1α, NRF‐1, NRF‐2 and the recently implicated ERRα. We show that Mfn1, Mfn2, NRF‐2 and COX IV mRNA were increased 24 h post‐exercise, while PGC‐1α and ERRα mRNA increased 2 h post‐exercise. Finally, using in vitro cellular assays, we demonstrate that Mfn2 gene expression is driven by a PGC‐1α programme dependent on ERRα. The PGC‐1α/ERRα‐mediated induction of Mfn2 suggests a role of these two factors in mitochondrial fusion. Our results provide evidence that PGC‐1α not only mediates the increased expression of oxidative phosphorylation genes but also mediates alterations in mitochondrial architecture in response to aerobic exercise in humans.
0

Akt signalling through GSK‐3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy

Bertrand Léger et al.Aug 18, 2006
+8
M
R
B
Skeletal muscle size is tightly regulated by the synergy between anabolic and catabolic signalling pathways which, in humans, have not been well characterized. Akt has been suggested to play a pivotal role in the regulation of skeletal muscle hypertrophy and atrophy in rodents and cells. Here we measured the amount of phospho-Akt and several of its downstream anabolic targets (glycogen synthase kinase-3beta (GSK-3beta), mTOR, p70(s6k) and 4E-BP1) and catabolic targets (Foxo1, Foxo3, atrogin-1 and MuRF1). All measurements were performed in human quadriceps muscle biopsies taken after 8 weeks of both hypertrophy-stimulating resistance training and atrophy-stimulating de-training. Following resistance training a muscle hypertrophy ( approximately 10%) and an increase in phospho-Akt, phospho-GSK-3beta and phospho-mTOR protein content were observed. This was paralleled by a decrease in Foxo1 nuclear protein content. Following the de-training period a muscle atrophy (5%), relative to the post-training muscle size, a decrease in phospho-Akt and GSK-3beta and an increase in Foxo1 were observed. Atrogin-1 and MuRF1 increased after the hypertrophy and decreased after the atrophy phases. We demonstrate, for the first time in human skeletal muscle, that the regulation of Akt and its downstream signalling pathways GSK-3beta, mTOR and Foxo1 are associated with both the skeletal muscle hypertrophy and atrophy processes.
1

Neuronal mitochondria transport Pink1 mRNA via Synaptojanin 2 to support local mitophagy

Angelika Harbauer et al.May 20, 2021
+8
S
C
A
Abstract PTEN-induced kinase 1 (PINK1) is a very short-lived protein that is required for the removal of damaged mitochondria through Parkin translocation and mitophagy. Because the short half-life of PINK1 limits its ability to be trafficked into neurites, local translation is required for this mitophagy pathway to be active far from the soma. The Pink1 transcript is associated with and cotransported with neuronal mitochondria. In concert with translation, the mitochondrial outer membrane protein Synaptojanin 2 binding protein (SYNJ2BP) and Synaptojanin 2 (SYNJ2) are required for tethering Pink1 mRNA to mitochondria via an RNA-binding domain in SYNJ2. This neuron-specific adaptation for local translation of PINK1 provides distal mitochondria with a continuous supply of PINK1 for activation of mitophagy.
1
Citation4
0
Save
0

Compartmental Differences in the Retinal Ganglion Cell Mitochondrial Proteome

Lindiann Lewis et al.May 10, 2024
+4
Y
N
L
Abstract Among neurons, retinal ganglion cells (RGCs) are uniquely sensitive to mitochondrial dysfunction. The RGC is highly polarized, with a somatodendritic compartment in the inner retina and an axonal compartment projecting to targets in the brain. The drastically dissimilar functions of these compartments implies that mitochondria face different bioenergetic and other physiological demands. We hypothesized that compartmental differences in mitochondrial biology would be reflected by disparities in mitochondrial protein composition. Here, we describe a protocol to isolate intact mitochondria separately from mouse RGC somatodendritic and axonal compartments by immunoprecipitating labeled mitochondria from RGC MitoTag mice. Using mass spectrometry, 471 and 357 proteins were identified in RGC somatodendritic and axonal mitochondrial immunoprecipitates, respectively. We identified 10 mitochondrial proteins exclusively in the somatodendritic compartment and 19 enriched ≥2-fold there, while 3 proteins were exclusively identified and 18 enriched in the axonal compartment. Our observation of compartment-specific enrichment of mitochondrial proteins was validated through immunofluorescence analysis of the localization and relative abundance of superoxide dismutase ( SOD2 ), sideroflexin-3 ( SFXN3 ) and trifunctional enzyme subunit alpha ( HADHA ) in retina and optic nerve specimens. The identified compartmental differences in RGC mitochondrial composition may provide promising leads for uncovering physiologically relevant pathways amenable to therapeutic intervention for optic neuropathies.
0

Generation of an Armcx1 Conditional Knockout Mouse

Cora Bright et al.Aug 1, 2024
+3
M
H
C
ABSTRACT Armadillo repeat‐containing X‐linked protein‐1 (Armcx1) is a poorly characterized transmembrane protein that regulates mitochondrial transport in neurons. Its overexpression has been shown to induce neurite outgrowth in embryonic neurons and to promote retinal ganglion cell (RGC) survival and axonal regrowth in a mouse optic nerve crush model. In order to evaluate the functions of endogenous Armcx1 in vivo , we have created a conditional Armcx1 knockout mouse line in which the entire coding region of the Armcx1 gene is flanked by loxP sites. This Armcx1 fl line was crossed with mouse strains in which Cre recombinase expression is driven by the promoters for β‐actin and Six3 , in order to achieve deletion of Armcx1 globally and in retinal neurons, respectively. Having confirmed deletion of the gene, we proceeded to characterize the abundance and morphology of RGCs in Armcx1 knockout mice aged to 15 months. Under normal physiological conditions, no evidence of aberrant retinal or optic nerve development or RGC degeneration was observed in these mice. The Armcx1 fl mouse should be valuable for future studies investigating mitochondrial morphology and transport in the absence of Armcx1 and in determining the susceptibility of Armcx1‐deficient neurons to degeneration in the setting of additional heritable or environmental stressors.
1

Local Accumulation of Axonal Mitochondria in the Optic Nerve Glial Lamina Precedes Myelination

Samantha Wilkison et al.Feb 25, 2021
+3
R
C
S
Abstract Mitochondria are essential for neurons and must be optimally distributed along their axon to fulfil local functions. A high density of mitochondria has been observed in retinal ganglion cell (RGC) axons of an unmyelinated region of the optic nerve, called the glial lamina (GL) in mouse (lamina cribrosa in human). In glaucoma, the world’s leading cause of irreversible blindness, the GL is the epicenter of RGC degeneration and is connected to mitochondrial dysfunction. It is generally accepted that the local accumulation of mitochondria in the GL is established due to the higher energy requirement of unmyelinated axons. Here we revisit the connection between mitochondrial positioning and myelin in RGC axons. We show that the high density of mitochondria in the GL is restricted to larger axons and is established before myelination. Thus, contrary to a longstanding belief in the field, the myelination pattern is not responsible for the establishment of the local accumulation of mitochondria in GL axons. Our findings open new research avenues likely critical to understanding the pathophysiology of glaucoma.