XY
Xinxing Yang
Author with expertise in Bacterial Physiology and Genetics
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(55% Open Access)
Cited by:
24
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
25

FtsN activates septal cell wall synthesis by forming a processive complex with the septum-specific peptidoglycan synthase in E. coli

Zhixin Lyu et al.Aug 24, 2021
+5
X
A
Z
Abstract The FtsN protein of Escherichia coli and other proteobacteria is an essential and highly conserved bitopic membrane protein that triggers the inward synthesis of septal peptidoglycan (sPG) during cell division. Previous work has shown that the activation of sPG synthesis by FtsN involves a series of interactions of FtsN with other divisome proteins and the cell wall. Precisely how FtsN achieves this role is unclear, but a recent study has shown that FtsN promotes the relocation of the essential sPG synthase FtsWI from an FtsZ-associated track (where FtsWI is inactive) to an sPG-track (where FtsWI engages in sPG synthesis). Whether FtsN works by displacing FtsWI from the Z-track or capturing/retaining FtsWI on the sPG-track is not known. Here we use single-molecule imaging and genetic manipulation to investigate the organization and dynamics of FtsN at the septum and how they are coupled to sPG synthesis activity. We found that FtsN exhibits a spatial organization and dynamics distinct from those of the FtsZ-ring. Single FtsN molecules move processively as a single population with a speed of ∼ 9 nm s -1 , similar to the speed of active FtsWI molecules on the sPG-track, but significantly different from the ∼ 30 nm s -1 speed of inactive FtsWI molecules on the FtsZ-track. Furthermore, the processive movement of FtsN is independent of FtsZ’s treadmilling dynamics but driven exclusively by active sPG synthesis. Importantly, only the essential domain of FtsN, a three-helix bundle in the periplasm, is required to maintain the processive complex containing both FtsWI and FtsN on the sPG-track. We conclude that FtsN activates sPG synthesis by forming a processive synthesis complex with FtsWI exclusively on the sPG-track. These findings favor a model in which FtsN captures or retains FtsWI on the sPG-track rather than one in which FtsN actively displaces FtsWI from the Z-track.
25
Citation10
0
Save
0

A Pairwise Distance Distribution Correction (DDC) algorithm to eliminate blinking-caused artifacts in super-resolution microscopy

Christopher Bohrer et al.Sep 12, 2019
+11
X
X
C
Abstract In single-molecule localization based super-resolution microscopy (SMLM), a fluorophore stochastically switches between fluorescent- and dark-states, leading to intermittent emission of fluorescence, a phenomenon known as blinking. Intermittent emissions create multiple localizations belonging to the same molecule, resulting in blinking-artifacts within SMLM images. These artifacts are often interpreted as true biological assemblies, confounding quantitative analyses and interpretations. Multiple methods have been developed to eliminate these artifacts, but they either require additional experiments, arbitrary thresholds, or specific photo-kinetic models. Here we present a method, termed Distance Distribution Correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach relies on the finding that the true pairwise distance distribution of different fluorophores in an SMLM image can be naturally obtained from the imaging sequence by using distances between localizations separated by a time much longer than the average fluorescence survival time. We show that using the true pairwise distribution we can define and then maximize the likelihood of obtaining a particular set of localizations void of blinking-artifacts, generating an accurate reconstruction of the underlying cellular structure. Using both simulated and experimental data, we show that DDC surpasses all previous existing blinking-artifact correction methodologies, resulting in drastic improvements in obtaining the closest estimate of the true spatial organization and number of fluorescent emitters in a wide range of applications. The simplicity and robustness of DDC will allow it to become the field standard in SMLM imaging, enabling the most accurate reconstruction and quantification of SMLM images to date.
37

Integration of cell wall synthesis activation and chromosome segregation during cell division inCaulobacter

Christopher Mahone et al.Nov 5, 2022
+3
X
J
C
ABSTRACT To divide, bacteria must synthesize and remodel their peptidoglycan (PG) cell wall, a protective meshwork that maintains cell shape. FtsZ, a tubulin homolog, dynamically assembles into a midcell band, recruiting division proteins including the PG synthases FtsW and FtsI. FtsWI are activated to synthesize PG and drive constriction at the appropriate time and place, however their activation pathway remains unresolved. In Caulobacter crescentus , FtsWI activity requires FzlA, an essential FtsZ-binding protein. Through time-lapse imaging and single-molecule tracking of C. crescentus FtsW and FzlA in perturbed genetic backgrounds, we demonstrate that FzlA is a limiting constriction activation factor that converts inactive, fast-moving FtsW to an active, slow-moving state. We find that FzlA interacts with the DNA translocase FtsK, and place FtsK genetically in a pathway with FzlA and FtsWI. Misregulation of the FzlA-FtsK-FtsWI pathway leads to heightened DNA damage and cell death. We propose that FzlA integrates the FtsZ ring, chromosome segregation, and PG synthesis to ensure robust and timely constriction during Caulobacter division.
37
Citation4
0
Save
0

Unidirectional fork movement coupled with strand-specific histone incorporation ensures asymmetric histone inheritance

Matthew Wooten et al.Jan 4, 2018
+7
J
X
M
One Sentence Summary DNA replication establishes asymmetric epigenomes Summary One of the most fundamental questions in developmental biology concerns how cells with identical genomes differentiate into distinct cell types. One important context for understanding cell fate specification is asymmetric cell division, where the two daughter cells establish different cell fates following a single division. Many stem cells undergo asymmetric division to produce both a self-renewing stem cell and a differentiating daughter cell 1–5 . Here we show that histone H4 is inherited asymmetrically in asymmetrically dividing Drosophila male germline stem cells, similar to H3 6 . In contrast, both H2A and H2B are inherited symmetrically. By combining superresolution microscopy with the chromatin fiber method, we are able to study histone inheritance patterns on newly replicated chromatin fibers. Using this technique, we find asymmetric inheritance patterns for old and new H3, but symmetric inheritance patterns for old and new H2A on replicating sister chromatids. Furthermore, co-localization studies on isolated chromatin fibers and proximity ligation assays on intact nuclei reveal that old H3 are preferentially incorporated by the leading strand while newly synthesized H3 are enriched on the lagging strand. Finally, using a sequential nucleoside analog incorporation assay, we detect a high incidence of unidirectional DNA replication on germline-derived chromatin fibers and DNA fibers. The unidirectional fork movement coupled with the strand preference of histone incorporation could explain how old and new H3 are asymmetrically incorporated by replicating sister chromatids. In summary, our work demonstrates that the intrinsic asymmetries in DNA replication may help construct sister chromatids enriched with distinct populations of histones. Therefore, these results suggest unappreciated roles for DNA replication in asymmetrically dividing cells in multicellular organisms.
0
Citation2
0
Save
5

Light-dependent modulation of protein localization and function in living bacteria cells

Ryan McQuillen et al.May 1, 2022
+2
C
X
R
Abstract Most bacteria lack membrane-enclosed organelles to compartmentalize cellular processes. In lieu of physical compartments, bacterial proteins are often recruited to macromolecular scaffolds at specific subcellular locations to carry out their functions. Consequently, the ability to modulate a protein’s subcellular location with high precision and speed bears the potential to manipulate its corresponding cellular functions. Here we demonstrate that the CRY2/CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations inside live E. coli cells including the nucleoid, the cell pole, membrane, and the midcell division plane. We further show that such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. Finally, we demonstrate that the CRY2/CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system.
5
Paper
Citation1
1
Save
0

FtsN coordinates septal peptidoglycan synthesis and degradation through self-interaction of SPOR inE. coli

Zhixin Lyu et al.May 13, 2024
+6
X
B
Z
Abstract The E. coli cell division protein FtsN was proposed to coordinate septal peptidoglycan (sPG) synthesis and degradation to ensure robust cell wall constriction without lethal lesions. Although the precise mechanism remains unclear, previous work highlights the importance of two FtsN domains: the E domain, which interacts with and activates the sPG synthesis complex FtsWIQLB, and the SPOR domain, which binds to denuded glycan (dnG) strands, key intermediates in sPG degradation. Here, we used single-molecule tracking of FtsN and FtsW (a proxy for the sPG synthesis complex FtsWIQLB) to investigate how FtsN coordinates the two opposing processes. We observed dynamic behaviors indicating that FtsN’s SPOR domain binds to dnGs cooperatively, which both sequesters the sPG synthesis complex on dnG (termed as the dnG-track) and protects dnGs from degradation by lytic transglycosylases (LTs). The release of the SPOR domain from dnGs leads to activating the sPG synthesis complex on the sPG-track and simultaneously exposing those same dnGs to degradation. Furthermore, FtsN’s SPOR domain self-interacts and facilitates the formation of a multimeric sPG synthesis complex on both tracks. The cooperative self-interaction of the SPOR domain creates a sensitive switch to regulate the partitioning of FtsN between the dnG- and sPG-tracks, thereby controlling the balance between sequestered and active populations of the sPG synthesis complex. As such, FtsN coordinates sPG synthesis and degradation in space and time.
0
Citation1
0
Save
0

Sextuple knockouts of a highly conserved and coexpressed AUXIN/INDOLE‐3‐ACETIC ACID gene set confer shade avoidance‐like responses in Arabidopsis

Xinxing Yang et al.Jul 16, 2024
+7
H
N
X
Abstract AUXIN/INDOLE‐3‐ACETIC ACIDs are transcriptional repressors for auxin signalling. Aux/IAAs of Arabidopsis thaliana display some functional redundancy. The IAA3/SHY2 clade ( IAA1 , IAA2 , IAA3 and IAA4 ) show strong sequence similarity, but no higher‐order mutants have been reported. Here, through CRISPR/Cas9 genome editing, we generated loss‐of‐function iaa1/2/3/4 mutants. The quadruple mutants only exhibited a weak phenotype. Thus, we additionally knocked out IAA7/AXR2 and IAA16 , which are coexpressed with IAA1/2/3/4 . Remarkably, under white light control conditions, the iaa1/2/3/4/7/16 mutants exhibited a shade avoidance‐like phenotype with over‐elongated hypocotyls and petioles and hyponastic leaves. The sextuple mutants were highly sensitive to low light intensity, and the hypocotyl cells of the mutants were excessively elongated. Transcriptome profiling and qRT‐PCR analyses revealed that the sextuple mutation upregulated IAA19/MSG2 and IAA29 , two shared shade/auxin signalling targets. Besides, genes encoding cell wall‐remodelling proteins and shade‐responsive transcription regulators were upregulated. Using dual‐luciferase reporter assays, we verified that IAA2/IAA7 targeted the promoters of cell wall‐remodelling genes to inhibit their transcription. Our work indicates that the IAA1/2/3/4/7/16 gene set is required for the optimal integration of auxin and shade signalling. The mutants generated here should be valuable for exploring the complex interactions among signal sensors, transcription activators and transcription repressors during hormone/environmental responses.
0

FtsW exhibits distinct processive movements driven by either septal cell wall synthesis or FtsZ treadmilling in E. coli

Xinxing Yang et al.Nov 21, 2019
+9
P
Z
X
During bacterial cell division, synthesis of new septal peptidoglycan (sPG) is crucial for successful cytokinesis and cell pole morphogenesis. FtsW, a SEDS (Shape, Elongation, Division and Sporulation) family protein and an indispensable component of the cell division machinery in all walled bacterial species, was recently identified in vitro as a new monofunctional peptidoglycan glycosyltransferases (PGTase). FtsW and its cognate monofunctional transpeptidase (TPase) class b penicillin binding protein (PBP3 or FtsI in E. coli) may constitute the essential, bifunctional sPG synthase specific for new sPG synthesis. Despite its importance, the septal PGTase activity of FtsW has not been documented in vivo. How its activity is spatiotemporally regulated in vivo has also remained unknown. Here we investigated the septal PGTase activity and dynamics of FtsW in E. coli cells using a combination of single-molecule imaging and genetic manipulations. We showed that FtsW exhibited robust activity to incorporate an N-acetylmuramic acid analog at septa in the absence of other known PGTases, confirming FtsW as the essential septum-specific PGTase in vivo. Furthermore, we identified two populations of processively moving FtsW molecules at septa. A fast-moving population is driven by the treadmilling dynamics of FtsZ and independent of sPG synthesis. A slow-moving population is driven by active sPG synthesis and independent of FtsZ treadmilling dynamics. We further identified that FtsN, a potential sPG synthesis activator, plays an important role in promoting the slow-moving, sPG synthesis-dependent population. Our results support a two-track model, in which inactive sPG synthase molecules follow the fast treadmilling 'Z-track' to be distributed along the septum; FtsN promotes their release from the 'Z-track' to become active in sPG synthesis on the slow 'sPG-track'. This model integrates spatial information into the regulation of sPG synthesis activity and could serve as a mechanism for the spatiotemporal coordination of bacterial cell wall constriction.
0

Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism

Joshua McCausland et al.Nov 28, 2019
+9
G
X
J
FtsZ, a highly conserved bacterial tubulin GTPase homolog, is a central component of the cell division machinery in nearly all walled bacteria. FtsZ polymerizes at the future division site and recruits > 30 proteins that assemble into a macromolecular complex termed divisome. Many of these divisome proteins are involved in septal cell wall peptidoglycan (sPG) synthesis. Recent studies found that FtsZ polymers undergo GTP hydrolysis-coupled treadmilling dynamics along the septum circumference of dividing cells, which drives processive movements of sPG synthesis enzymes. The mechanism of FtsZ treadmilling-driven directional transport of sPG enzymes and its precise role in bacterial cell division are unknown. Combining theoretical modeling and experimental testing, we show that FtsZ treadmilling drives the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism, where the shrinking end of FtsZ polymers introduces an asymmetry to rectify diffusion of single enzyme molecules into persistent end-tracking movement. Furthermore, we show that processivity of this directional movement hinges on the balance between the enzyme's diffusion and FtsZ's treadmilling speed, which provides a mechanism to control the level of available enzymes for active sPG synthesis, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacterial species.
0

GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell-wall synthesis

Xinxing Yang et al.Sep 26, 2016
+3
A
Z
X
The bacterial tubulin FtsZ is the central component of the division machinery, coordinating an ensemble of proteins involved in septal cell-wall synthesis to ensure successful constriction. How cells achieve this coordination is unknown. We used a combination of imaging, genetic and biochemical approaches to demonstrate that in Escherichia coli cells FtsZ exhibits dynamic treadmilling predominantly determined by its GTPase activity, and that the treadmilling dynamics directs processive movement of the septal cell-wall synthesis machinery. In FtsZ mutants with severely reduced treadmilling, the spatial distribution of septal synthesis and the molecular composition and ultrastructure of the septal cell wall are substantially altered. Thus, the treadmilling of FtsZ provides a novel and robust mechanism for achieving uniform septal cell-wall synthesis to enable correct new pole morphology.
Load More