RC
Rachel Carmody
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(82% Open Access)
Cited by:
10,113
h-index:
24
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Diet rapidly and reproducibly alters the human gut microbiome

Lawrence David et al.Dec 11, 2013
+10
R
C
L
Consuming diets rich in plant versus animal products changes the microbes found in the human gut within days, with important implications for our health and evolution. Diet influences the structure and function of the gut microbiota in the long term, but it is not clear how rapidly the microbiota is affected by short-term dietary change. Peter Turnbaugh and colleagues studied the effect of transition to a diet consisting entirely of either animal products or plant products on the composition and function of the human gut microbiota. They find that the community changes rapidly, within a single day, overwhelming the pre-existing inter-individual differences in microbiota composition to recapitulate expected patterns of composition and metabolic function for carnivorous and herbivorous mammals. The animal-based diet was associated with higher levels of bile-tolerant microorganisms, including the bacterium Bilophila wadsworthia, which has previously been linked to inflammatory bowel disease. The authors also detected intact foodborne fungi, bacteria and viruses in the distal gut. Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut1,2,3,4,5, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals2, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease6. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
1
Citation8,191
0
Save
0

Diet Dominates Host Genotype in Shaping the Murine Gut Microbiota

Rachel Carmody et al.Dec 20, 2014
+4
J
G
R
Mammals exhibit marked interindividual variations in their gut microbiota, but it remains unclear if this is primarily driven by host genetics or by extrinsic factors like dietary intake. To address this, we examined the effect of dietary perturbations on the gut microbiota of five inbred mouse strains, mice deficient for genes relevant to host-microbial interactions (MyD88−/−, NOD2−/−, ob/ob, and Rag1−/−), and >200 outbred mice. In each experiment, consumption of a high-fat, high-sugar diet reproducibly altered the gut microbiota despite differences in host genotype. The gut microbiota exhibited a linear dose response to dietary perturbations, taking an average of 3.5 days for each diet-responsive bacterial group to reach a new steady state. Repeated dietary shifts demonstrated that most changes to the gut microbiota are reversible, while also uncovering bacteria whose abundance depends on prior consumption. These results emphasize the dominant role that diet plays in shaping interindividual variations in host-associated microbial communities.
0
Citation972
0
Save
0

Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet–Induced Metabolic Syndrome

Diana Roopchand et al.Apr 6, 2015
+4
P
R
D
Dietary polyphenols protect against metabolic syndrome, despite limited absorption and digestion, raising questions about their mechanism of action. We hypothesized that one mechanism may involve the gut microbiota. To test this hypothesis, C57BL/6J mice were fed a high-fat diet (HFD) containing 1% Concord grape polyphenols (GP). Relative to vehicle controls, GP attenuated several effects of HFD feeding, including weight gain, adiposity, serum inflammatory markers (tumor necrosis factor [TNF]α, interleukin [IL]-6, and lipopolysaccharide), and glucose intolerance. GP lowered intestinal expression of inflammatory markers (TNFα, IL-6, inducible nitric oxide synthase) and a gene for glucose absorption (Glut2). GP increased intestinal expression of genes involved in barrier function (occludin) and limiting triglyceride storage (fasting-induced adipocyte factor). GP also increased intestinal gene expression of proglucagon, a precursor of proteins that promote insulin production and gut barrier integrity. 16S rRNA gene sequencing and quantitative PCR of cecal and fecal samples demonstrated that GP dramatically increased the growth of Akkermansia muciniphila and decreased the proportion of Firmicutes to Bacteroidetes, consistent with prior reports that similar changes in microbial community structure can protect from diet-induced obesity and metabolic disease. These data suggest that GP act in the intestine to modify gut microbial community structure, resulting in lower intestinal and systemic inflammation and improved metabolic outcomes. The gut microbiota may thus provide the missing link in the mechanism of action of poorly absorbed dietary polyphenols.
0

The energetic significance of cooking

Rachel Carmody et al.Sep 4, 2009
R
R
While cooking has long been argued to improve the diet, the nature of the improvement has not been well defined. As a result, the evolutionary significance of cooking has variously been proposed as being substantial or relatively trivial. In this paper, we evaluate the hypothesis that an important and consistent effect of cooking food is a rise in its net energy value. The pathways by which cooking influences net energy value differ for starch, protein, and lipid, and we therefore consider plant and animal foods separately. Evidence of compromised physiological performance among individuals on raw diets supports the hypothesis that cooked diets tend to provide energy. Mechanisms contributing to energy being gained from cooking include increased digestibility of starch and protein, reduced costs of digestion for cooked versus raw meat, and reduced energetic costs of detoxification and defence against pathogens. If cooking consistently improves the energetic value of foods through such mechanisms, its evolutionary impact depends partly on the relative energetic benefits of non-thermal processing methods used prior to cooking. We suggest that if non-thermal processing methods such as pounding were used by Lower Palaeolithic Homo, they likely provided an important increase in energy gain over unprocessed raw diets. However, cooking has critical effects not easily achievable by non-thermal processing, including the relatively complete gelatinisation of starch, efficient denaturing of proteins, and killing of food borne pathogens. This means that however sophisticated the non-thermal processing methods were, cooking would have conferred incremental energetic benefits. While much remains to be discovered, we conclude that the adoption of cooking would have led to an important rise in energy availability. For this reason, we predict that cooking had substantial evolutionary significance.
0
Paper
Citation374
0
Save
2

Gut Microbiota Predicts Healthy Late-Life Aging in Male Mice

Shanlin Ke et al.Sep 21, 2021
+8
M
S
S
Calorie restriction (CR) extends lifespan and retards age-related chronic diseases in most species. There is growing evidence that the gut microbiota has a pivotal role in host health and age-related pathological conditions. Yet, it is still unclear how CR and the gut microbiota are related to healthy aging. Here, we report findings from a small longitudinal study of male C57BL/6 mice maintained on either ad libitum or mild (15%) CR diets from 21 months of age and tracked until natural death. We demonstrate that CR results in a significantly reduced rate of increase in the frailty index (FI), a well-established indicator of aging. We observed significant alterations in diversity, as well as compositional patterns of the mouse gut microbiota during the aging process. Interrogating the FI-related microbial features using machine learning techniques, we show that gut microbial signatures from 21-month-old mice can predict the healthy aging of 30-month-old mice with reasonable accuracy. This study deepens our understanding of the links between CR, gut microbiota, and frailty in the aging process of mice.
2
Citation12
1
Save
0

Microbial transmission in the social microbiome and host health and disease

Amar Sarkar et al.Jan 1, 2024
+13
S
C
A
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
0
Citation4
1
Save
1

Gut Microbiota predicts Healthy Late-life Aging in Male Mice

Shanlin Ke et al.Jun 22, 2021
+8
M
S
S
Calorie restriction (CR) extends lifespan and retards age-related chronic diseases in most species. There is growing evidence that the gut microbiota has a pivotal role in host health and age-related pathological conditions. Yet, it is still unclear how CR and the gut microbiota are related to healthy aging. Here we report findings from a small longitudinal study of male C57BL/6 mice maintained on either ad libitum or mild (15%) CR diets from 21 months of age and tracked until natural death. We demonstrate that CR results in a significant reduction in frailty index (FI), a well-established indicator of aging. We observed significant alterations in bacterial load, diversity, and compositional patterns of the mouse gut microbiota during the aging process. Interrogating the FI-related microbial features using machine learning techniques, we show that gut microbial signatures from 21-month-old mice can predict the healthy aging of 30-month-old mice with reasonable accuracy. This study deepens our understanding of the links between CR, gut microbiota, and frailty in the aging process of mice.
1
Citation1
0
Save
21

A Statistical Model for Describing and Simulating Microbial Community Profiles

Siyuan Ma et al.Mar 26, 2021
+9
H
B
S
Abstract Many methods have been developed for statistical analysis of microbial community profiles, but due to the complex nature of typical microbiome measurements (e.g. sparsity, zero-inflation, nonindependence, and compositionality) and of the associated underlying biology, it is difficult to compare or evaluate such methods within a single systematic framework. To address this challenge, we developed SparseDOSSA (Sparse Data Observations for the Simulation of Synthetic Abundances): a statistical model of microbial ecological population structure, which can be used to parameterize real-world microbial community profiles and to simulate new, realistic profiles of known structure for methods evaluation. Specifically, SparseDOSSA’s model captures marginal microbial feature abundances as a zero-inflated log-normal distribution, with additional model components for absolute cell counts and the sequence read generation process, microbemicrobe, and microbe-environment interactions. Together, these allow fully known covariance structure between synthetic features (i.e. “taxa”) or between features and “phenotypes” to be simulated for method benchmarking. Here, we demonstrate SparseDOSSA’s performance for 1) accurately modeling human-associated microbial population profiles; 2) generating synthetic communities with controlled population and ecological structures; 3) spiking-in true positive synthetic associations to benchmark analysis methods; and 4) recapitulating an end-to-end mouse microbiome feeding experiment. Together, these represent the most common analysis types in assessment of real microbial community environmental and epidemiological statistics, thus demonstrating SparseDOSSA’s utility as a general-purpose aid for modeling communities and evaluating quantitative methods. An open-source implementation is available at http://huttenhower.sph.harvard.edu/sparsedossa2 .
21
Citation1
0
Save
11

Common proanthocyanidin-rich foods modulate gastrointestinal blooms of Akkermansia muciniphila in a diet-dependent manner

Katia Chadaideh et al.Nov 7, 2021
R
B
K
K
Summary Developing methods to modulate growth of the mucin-degrading gut bacterium Akkermansia muciniphila could benefit patients with different health needs, as A. muciniphila has been associated with both positive metabolic health outcomes and detrimental neurodegenerative outcomes. Growth of A. muciniphila is sensitive to plant-derived polyphenols, and particularly proanthocyanidins (PACs), when administered in isolated form at supraphysiological doses. However, it remains unclear whether doses sufficient for these effects are achievable via diet. Here, we explore the extent to which nutritionally relevant doses of common polyphenol-rich foods – berries, wine, and coffee – influence A. muciniphila abundance in C57BL/6J mice under varying dietary conditions. By administering polyphenol-rich whole foods, comparing polyphenol-depleted and PAC-rich versus PAC-poor food supplements, and through gradient PAC-dosing experiments, we show that PAC-rich foods uniquely induce A. muciniphila growth at doses that are feasibly achieved through routine diet. Notably, the effects of PAC supplementation were detected against a high-fat diet but not a low-fat control diet background, highlighting the importance of habitual diet strategies in either amplifying or mitigating the prebiotic effects of PAC-rich food consumption. Ultimately, our work suggests that both PACs and diet influence A. muciniphila abundance with downstream impacts for human health.
11
Citation1
0
Save
0

Parallel signatures of mammalian domestication and human industrialization in the gut microbiota

Aspen Reese et al.Apr 18, 2019
+5
C
K
A
Domestication may have had convergent effects on the microbiota of domesticates and humans through analogous ecological shifts. Comparing the gut microbiota of domestic and related wild mammals plus humans and chimpanzees, we found consistent shifts in composition in domestic animals and in humans from industrialized but not traditional societies. Reciprocal diet switches in mice and canids demonstrated that diet played a dominant role in shaping the domestic gut microbiota, with stronger responses in the member of the wild-domestic pair with higher dietary and microbial diversity. Laboratory mice recovered wild-like microbial diversity and responsiveness with experimental colonization. We conclude that domestication and industrialization have similarly impacted the gut microbiota, emphasizing the utility of domestic animal models and diets for understanding host-microbial interactions in rapidly changing environments.
Load More