MM
Michelle Moksa
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(60% Open Access)
Cited by:
3,450
h-index:
22
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin

Ryan Morin et al.Jan 17, 2010
Marco Marra and colleagues identify somatic mutations in EZH2 in diffuse large B-cell lymphomas and follicular lymphomas. EZH2 is a histone methyltransferase that participates in trimethylation of H3 Lys27 (H3K27) as part of the PRC2 complex. The mutations alter a single tyrosine residue in the SET domain of EZH2 and reduce the ability of PRC2 to trimethylate H3K27 in vitro. Follicular lymphoma (FL) and the GCB subtype of diffuse large B-cell lymphoma (DLBCL) derive from germinal center B cells1. Targeted resequencing studies have revealed mutations in various genes encoding proteins in the NF-κB pathway2,3 that contribute to the activated B-cell (ABC) DLBCL subtype, but thus far few GCB-specific mutations have been identified4. Here we report recurrent somatic mutations affecting the polycomb-group oncogene5 EZH2, which encodes a histone methyltransferase responsible for trimethylating Lys27 of histone H3 (H3K27). After the recent discovery of mutations in KDM6A (UTX), which encodes the histone H3K27me3 demethylase UTX, in several cancer types6, EZH2 is the second histone methyltransferase gene found to be mutated in cancer. These mutations, which result in the replacement of a single tyrosine in the SET domain of the EZH2 protein (Tyr641), occur in 21.7% of GCB DLBCLs and 7.2% of FLs and are absent from ABC DLBCLs. Our data are consistent with the notion that EZH2 proteins with mutant Tyr641 have reduced enzymatic activity in vitro.
0
Citation1,568
0
Save
0

Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma

Ryan Morin et al.Jul 26, 2011
Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). Here we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case to identify genes with mutations in B-cell NHL. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase, and 11.4% and 13.4% of DLBCL and FL cases, respectively, had mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis. Despite being a focus of research activity for many years, the mutations driving the two most common non-Hodgkin lymphomas — follicular lymphoma and diffuse large B-cell lymphoma — have remained cryptic. Whole genome sequencing, combined with transcriptome analysis and further resequencing of candidate genes in additional tumours, now show that histone methyltransferases and acetylases are frequently affected by mutations in these tumours. This study suggests a previously unappreciated importance of chromatin biology in lymphomagenesis.
0
Citation1,520
0
Save
0

Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy

Xiaoyang Lan et al.Aug 29, 2017
Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare ‘outlier’ clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy. Using unique barcodes for tumour cells, the authors explore the dynamics of human glioblastoma subpopulations, and suggest that clonal heterogeneity emerges through stochastic fate decisions of a neutral proliferative hierarchy. Cancers are heterogeneous between patients and between tumour cells. It is still difficult to identify the subpopulations of cells that most contribute to tumour growth and those that are targeted by therapy. Xiaoyang Lan et al. now explore the dynamics of human glioblastoma (GBM) subpopulations using barcodes for tumour cells. They suggest that a proliferative hierarchy emerges through stochastic cell fate decision. In this model, slow-cycling stem cells give rise to rapidly proliferative progenitors that fuel tumour growth and which in turn generate cells that are short-lived and do not proliferate. This is in contrast to a clonal evolution model based on the different fitness of cells that are selected for. The authors also identify a rare subpopulation of GBM cells that is resistant to TMZ treatment (the common treatment for GBM) but can be targeted by drug combinations.
0
Citation359
0
Save
23

Global prediction of candidate R-loop binding and R-loop regulatory proteins

Louis-Alexandre Fournier et al.Aug 9, 2021
ABSTRACT In the past decade there has been a growing appreciation for R-loop structures as important regulators of the epigenome, telomere maintenance, DNA repair and replication. Given these numerous functions, dozens, or potentially hundreds, of proteins could serve as direct or indirect regulators of R-loop writing, reading, and erasing. In order to understand common properties shared amongst potential R-loop binding proteins (RLBPs) we mined published proteomic studies and distilled 10 features that were enriched in RLBPs compared to the rest of the proteome. We used these RLBP-specific features along with their amino acid composition to create a random forest classifier which predicts the likelihood of a protein to bind to R-loops. In parallel, we employed a whole-genome CRISPR screen coupled with flow-cytometry using the S9.6 monoclonal antibody to sort guide RNAs associated with induction of high S9.6 staining. Known R-loop regulating pathways such as splicing and DNA damage repair are highly enriched in our datasets, and we validate two new R-loop modulating proteins. Together these resources provide a reference to pursue analyses of novel R-loop regulatory proteins.
23
Citation2
0
Save
0

Synovial Sarcoma Chromatin Dynamics Reveal a Continuum in SS18:SSX Reprograming

Jakob Hofvander et al.May 17, 2024
Summary Synovial sarcoma (SyS) is an aggressive soft-tissue malignancy characterized by a pathognomonic chromosomal translocation leading to the formation of the SS18::SSX fusion oncoprotein. SS18::SSX associates with mammalian BAF complexes suggesting deregulation of chromatin architecture as the oncogenic driver in this tumour type. To examine the epigenomic state of SyS we performed comprehensive multi-omics analysis on 52 primary pre-treatment human SyS tumours. Our analysis revealed a continuum of epigenomic states across the cohort at fusion target genes independent of rare somatic genetic lesions. We identify cell-of-origin signatures defined by enhancer states and reveal unexpected relationships between H2AK119Ub1 and active marks. The number of bivalent promoters, dually marked by the repressive H3K27me3 and activating H3K4me3 marks, has strong prognostic value and outperforms tumor grade in predicting patient outcome. Finally, we identify SyS defining epigenomic features including H3K4me3 expansion associated with striking promoter DNA hypomethylation in which SyS displays the lowest mean methylation level of any sarcoma subtype. We explore these distinctive features as potential vulnerabilities in SyS and identify H3K4me3 inhibition as a promising therapeutic strategy.
0
Citation1
0
Save
0

Genome-wide CRISPR screen identifies KEAP1 as a genetic dependency of ARID1A in an ovarian clear cell carcinoma model

Louis-Alexandre Fournier et al.Jan 1, 2023
ARID1A is the core DNA binding subunit of the BAF chromatin remodeling complex and is mutated in about ~8% of all cancers. The frequency of ARID1A loss varies between cancer subtypes, with clear cell ovarian carcinoma (CCOC) presenting the highest incidence at >50% of cases. Despite a growing understanding of the consequences of ARID1A-loss in cancer, there remains limited targeted therapeutic options for ARID1A-deficient cancers. Using a genome-wide CRISPR screening approach, we identify KEAP1 as a synthetic lethal partner of ARID1A in CCOC. Depletion or chemical inhibition of KEAP1 results in the selective killing of ARID1A-KO cells. While we confirm that KEAP1-NRF2 signalling is dysregulated in ARID1A-KO cells, we suggest that this synthetic lethality is not due to aberrant NRF2 signalling. Rather, we find that KEAP1 perturbation exacerbates genome instability phenotypes associated with ARID1A-deficiency. We also confirm the selective killing of ARID1A-KO cells by the KEAP1 inhibitor AI-1 in edited primary endometrial epithelial cells and organoids. Together, our findings uncover a novel therapeutic avenue for the treatment of cancers harboring ARID1A mutations.