JN
Junichi Nabekura
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
2,915
h-index:
53
/
i10-index:
127
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Resting Microglia Directly Monitor the Functional State of SynapsesIn Vivoand Determine the Fate of Ischemic Terminals

Hiroaki WAKE et al.Apr 1, 2009
+2
A
S
H
Recent studies have identified the important contribution of glial cells to the plasticity of neuronal circuits. Resting microglia, the primary immune effector cells in the brain, dynamically extend and retract their processes as if actively surveying the microenvironment. However, just what is being sampled by these resting microglial processes has not been demonstrated in vivo , and the nature and function of any interactions between microglia and neuronal circuits is incompletely understood. Using in vivo two-photon imaging of fluorescent-labeled neurons and microglia, we demonstrate that the resting microglial processes make brief (∼5 min) and direct contacts with neuronal synapses at a frequency of about once per hour. These contacts are activity-dependent, being reduced in frequency by reductions in neuronal activity. After transient cerebral ischemia, the duration of these microglia–synapse contacts are markedly prolonged (∼1 h) and are frequently followed by the disappearance of the presynaptic bouton. Our results demonstrate that at least part of the dynamic motility of resting microglial processes in vivo is directed toward synapses and propose that microglia vigilantly monitor and respond to the functional status of synapses. Furthermore, the striking finding that some synapses in the ischemic areas disappear after prolonged microglial contact suggests microglia contribute to the subsequent increased turnover of synaptic connections. Further understanding of the mechanisms involved in the microglial detection of the functional state of synapses, and of their role in remodeling neuronal circuits disrupted by ischemia, may lead to novel therapies for treating brain injury that target microglia.
2

Dual microglia effects on blood brain barrier permeability induced by systemic inflammation

Koichiro Haruwaka et al.Dec 20, 2019
+10
Y
A
K
Abstract Microglia survey brain parenchyma, responding to injury and infections. Microglia also respond to systemic disease, but the role of blood–brain barrier (BBB) integrity in this process remains unclear. Using simultaneous in vivo imaging, we demonstrated that systemic inflammation induces CCR5-dependent migration of brain resident microglia to the cerebral vasculature. Vessel-associated microglia initially maintain BBB integrity via expression of the tight-junction protein Claudin-5 and make physical contact with endothelial cells. During sustained inflammation, microglia phagocytose astrocytic end-feet and impair BBB function. Our results show microglia play a dual role in maintaining BBB integrity with implications for elucidating how systemic immune-activation impacts neural functions.
2
Citation602
0
Save
0

Microglia contact induces synapse formation in developing somatosensory cortex

Akiko Miyamoto et al.Aug 25, 2016
+7
A
H
A
Abstract Microglia are the immune cells of the central nervous system that play important roles in brain pathologies. Microglia also help shape neuronal circuits during development, via phagocytosing weak synapses and regulating neurogenesis. Using in vivo multiphoton imaging of layer 2/3 pyramidal neurons in the developing somatosensory cortex, we demonstrate here that microglial contact with dendrites directly induces filopodia formation. This filopodia formation occurs only around postnatal day 8–10, a period of intense synaptogenesis and when microglia have an activated phenotype. Filopodia formation is preceded by contact-induced Ca 2+ transients and actin accumulation. Inhibition of microglia by genetic ablation decreases subsequent spine density, functional excitatory synapses and reduces the relative connectivity from layer 4 neurons. Our data provide the direct demonstration of microglial-induced spine formation and provide further insights into immune system regulation of neuronal circuit development, with potential implications for developmental disorders of immune and brain dysfunction.
0
Citation540
0
Save
0

Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway

Yosuke Morizawa et al.Jun 15, 2017
+9
N
Y
Y
Astrocytes become reactive following various brain insults; however, the functions of reactive astrocytes are poorly understood. Here, we show that reactive astrocytes function as phagocytes after transient ischemic injury and appear in a limited spatiotemporal pattern. Following transient brain ischemia, phagocytic astrocytes are observed within the ischemic penumbra region during the later stage of ischemia. However, phagocytic microglia are mainly observed within the ischemic core region during the earlier stage of ischemia. Phagocytic astrocytes upregulate ABCA1 and its pathway molecules, MEGF10 and GULP1, which are required for phagocytosis, and upregulation of ABCA1 alone is sufficient for enhancement of phagocytosis in vitro. Disrupting ABCA1 in reactive astrocytes result in fewer phagocytic inclusions after ischemia. Together, these findings suggest that astrocytes are transformed into a phagocytic phenotype as a result of increase in ABCA1 and its pathway molecules and contribute to remodeling of damaged tissues and penumbra networks.Astrocytic phagocytosis has been shown to play a role in synaptic pruning during development, but whether adult astrocytes possess phagocytic ability is unclear. Here the authors show that following brain ischemia, reactive astrocytes become phagocytic and engulf debris via the ABCA1 pathway.
1

Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation

Masakazu Agetsuma et al.Sep 2, 2021
+8
I
T
M
Abstract Associative learning is crucial for adapting to environmental changes. The encoding of associative learning involves the dorso-medial prefrontal cortex (dmPFC), and is underpinned by interactions within the resident neuronal population. However, the nature of this population coding is poorly understood. Here we developed a pipeline for computational dissection and longitudinal two-photon imaging of neural population activities in the mouse dmPFC during fear-conditioning procedures, enabling us to detect learning-dependent changes in the dmPFC topology. Through regularized regression methods and graphical modeling, we found fear conditioning organized neuronal ensembles encoding conditioned responses (CR), with enhancing their coactivity, functional connectivity, and association with conditioned stimuli (CS). This suggests that fear conditioning drives dmPFC reorganization to generate novel associative circuits for CS-to-CR transformation. Importantly, neurons strongly responding to unconditioned stimuli (US) during conditioning anterogradely became a hub of the CR ensemble. Altogether, we demonstrate learning-dependent dynamic modulation of population coding structured on an activity-dependent hub-network formation within the dmPFC. Teaser Optical and computational dissection uncovered how prefrontal cortical networks are rewired to encode new associative memory Significance statement Animals learn to adapt to changing environments. Associative learning is one of the simplest types of learning that has been intensively studied over the past century. Recent development in molecular, genetic, and optogenetic methods has enabled the identification of a neural population encoding the associative memory in the brain. However, it remains unclear how information is stored and processed by the neural population to encode and retrieve the associative memory. To investigate the nature of this population coding, we developed an optical and computational dissection method, demonstrating how associative learning drives reorganization of the neural network in the dorso-medial prefrontal cortex and generates novel circuits for associative memory and signal transformation.
0

Neuronal migration depends on blood flow in the adult brain

Takashi Ogino et al.May 18, 2024
+12
A
M
T
Abstract In animal tissues, several cell types migrate along blood vessels, raising the possibility that blood flow influences cell migration. Here, we show that blood flow promotes the migration of new olfactory-bulb neurons in the adult brain. Neuronal migration is facilitated by blood flow, leading to accumulation of new neurons near blood vessels with abundant blood flow. Blood flow inhibition attenuates blood vessel-guided neuronal migration, suggesting that blood contains factors beneficial to neuronal migration. We found that ghrelin, which is increased in blood by hunger, directly influences neuronal migration. Ghrelin signaling promotes somal translocation by activating actin cytoskeleton contraction at the rear of the cell soma. New neurons mature in the olfactory bulb and contribute to the olfactory function for sensing odorants from food. Finally, we show that neuronal migration is increased by calorie restriction, and that ghrelin signaling is involved in the process. This study suggests that blood flow promotes neuronal migration through blood-derived ghrelin signaling in the adult brain, which could be one of the mechanisms that improve the olfactory function for food-seeking behavior during starvation.
1

Large-scale cranial window for in vivo mouse brain imaging utilizing fluoropolymer nanosheet and light-curable resin

Taiga Takahashi et al.Mar 4, 2024
+4
M
H
T
Two-photon microscopy enables in vivo imaging of neuronal activity in mammalian brains at high resolution. However, two-photon imaging tools for stable, long-term, and simultaneous study of multiple brain regions in same mice are lacking. Here, we propose a method to create large cranial windows covering such as the whole parietal cortex and cerebellum in mice using fluoropolymer nanosheets covered with light-curable resin (termed the 'Nanosheet Incorporated into light-curable REsin' or NIRE method). NIRE method can produce cranial windows conforming the curved cortical and cerebellar surfaces, without motion artifacts in awake mice, and maintain transparency for >5 months. In addition, we demonstrate that NIRE method can be used for in vivo two-photon imaging of neuronal ensembles, individual neurons and subcellular structures such as dendritic spines. The NIRE method can facilitate in vivo large-scale analysis of heretofore inaccessible neural processes, such as the neuroplastic changes associated with maturation, learning and neural pathogenesis.
0

Conditional upregulation of KCC2 selectively enhances neuronal inhibition during seizures

CS Goulton et al.Jan 25, 2018
+16
D
C
C
Efficacious neuronal inhibition is sustained by the neuronal K+Cl- co-transporter KCC2, and loss of KCC2 function through injury or mutation is associated with altered GABAergic signalling and neuronal seizures. Here we report a transgenic mouse with conditional KCC2 overexpression that results in increased membrane transport function. Increased KCC2 has little impact on behavioural and in vitro assays of neuronal excitability and GABAA receptor responses under resting conditions. In contrast, increased KCC2 imparts resistance to seizure-like neuronal activity in hippocampal slices and prevents the progression of mice into behavioural status epilepticus following multiple kainic acid doses. Our results demonstrate a transgenic mouse to facilitate investigations into the role of KCC2 in brain function, and provide a proof of principle that targeting KCC2 may be an effective way to selectively enhance neuronal inhibition to mitigate against diseases that involve an imbalance between excitation and inhibition.
0

Low-invasive, wide-field, and cellular resolution two-photon imaging of neural population activity in brainstem and nucleus tractus solitarii

Masakazu Agetsuma et al.Jun 1, 2024
+11
D
A
M
Summary Brain-viscera communication plays a crucial role in regulating mental health, with the vagus nerve being a key structure mediating this interaction. Clinically, artificial vagus nerve stimulation (VNS) is used to treat various neuropsychiatric disorders, highlighting the importance of vagal afferent fibers in regulating emotion. The nucleus tractus solitarii (NTS) is a brainstem structure proposed to receive signals from vagal afferents and relay them to brain networks for emotion regulation. However, due to the anatomical complexity and difficulty in accessing the deep-brain NTS region in living animals, the mechanisms remain unclear. Here, we developed a wide-field and deep-brain two-photon imaging method using a double-prism based optical interface. This approach enables the identification of cellular-resolution neural activities in the NTS while preserving the cerebellum, which covers the NTS and is important for emotion regulation, intact. We systematically evaluated how NTS neurons respond to VNS and a gastrointestinal hormone, suggesting the usefulness of this method for investigating the role of the vagus-NTS pathway in vivo .