IT
Isheng Tsai
Author with expertise in Mycorrhizal Fungi and Plant Interactions
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(76% Open Access)
Cited by:
4,755
h-index:
33
/
i10-index:
61
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Population genomics of domestic and wild yeasts

Gianni Liti et al.Feb 11, 2009
Baker's yeast, Saccharomyces cerevisiae, is one of the best studied model organisms, and has been associated with human activity for thousands of years. Two papers published in the 19 March 2009 issue of Nature provide a picture of its population structure and its relationship with other yeasts. Liti et al. compare genome variation in S. cerevisiae isolates with its closest wild cousin, S. paradoxus, which has never been associated with human activity. They find that variation in S. paradoxus closely follows geographic borders; S. cerevisiae shows less differentiation, consistent with opportunities for cross-breeding, rather than a few distinct domestication events, as the main human influence. Schacherer et al. compare 63 S. cerevisiae isolates from different ecological niches and geographic locations. They find evidence for genetic differentiation of three distinct subgroups based on where the strains were isolated: from vineyards, sake and related fermentations and lab strains. Their data support the hypothesis that these three groups represent separate domestication events, and that S. cerevisiae as a whole is not domesticated. By sequencing over seventy isolates of the domesticated baker's yeast Saccharomyces cerevisiae and its closest relative, S. paradoxus, this study describes variation in gene content, SNPs, indels, copy numbers and transposable elements, providing insights into the evolution of different lineages, phenotypic variation, domestication and population structure of Saccharomyces. Since the completion of the genome sequence of Saccharomyces cerevisiae in 1996 (refs 1, 2), there has been a large increase in complete genome sequences, accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions3,4, population structure5,6,7,8 and sexual versus asexual reproduction9,10. Less well understood at the whole genome level are the evolutionary processes acting within populations and species that lead to adaptation to different environments, phenotypic differences and reproductive isolation. Here we present one- to fourfold or more coverage of the genome sequences of over seventy isolates of the baker’s yeast S. cerevisiae and its closest relative, Saccharomyces paradoxus. We examine variation in gene content, single nucleotide polymorphisms, nucleotide insertions and deletions, copy numbers and transposable elements. We find that phenotypic variation broadly correlates with global genome-wide phylogenetic relationships. S. paradoxus populations are well delineated along geographic boundaries, whereas the variation among worldwide S. cerevisiae isolates shows less differentiation and is comparable to a single S. paradoxus population. Rather than one or two domestication events leading to the extant baker’s yeasts, the population structure of S. cerevisiae consists of a few well-defined, geographically isolated lineages and many different mosaics of these lineages, supporting the idea that human influence provided the opportunity for cross-breeding and production of new combinations of pre-existing variations.
0
Citation1,434
0
Save
0

The genomes of four tapeworm species reveal adaptations to parasitism

Isheng Tsai et al.Mar 12, 2013
Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control. Genome sequences of human-infective tapeworm species reveal extreme losses of genes and pathways that are ubiquitous in other animals, species-specific expansions of non-canonical heat shock proteins and families of known antigens, specialized detoxification pathways, and metabolism that relies on host nutrients; this information is used to identify new potential drug targets. Tapeworms cause echinococcosis and cysticercosis, two of the most severe parasitic diseases found in humans, and both on the World Health Organization's list of neglected tropical diseases. The publication of four tapeworm genome sequences — human-infective tapeworm species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma — and identification of potential new drug targets for treating tapeworm infections is therefore a welcome development. Analysis of the sequences provides insights into the evolution of parasitism and reveals extreme losses of genes and pathways ubiquitous in other animals on one hand and species-specific expansions of genes on the other. More than a thousand E. multilocularis proteins emerge as potential targets, and of these, close to 200 with the highest scores may be targeted with existing pharmaceuticals.
0
Citation670
0
Save
1

Comparative genomics of the major parasitic worms

Avril Coghlan et al.Oct 29, 2018
Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms. Comparative study of 81 genomes of parasitic and non-parasitic worms identifies gene family births and expanded gene families at key nodes in the phylogeny that are relevant to parasitism and proteins historically targeted for drug development.
1
Citation431
0
Save
0

A Systematically Improved High Quality Genome and Transcriptome of the Human Blood Fluke Schistosoma mansoni

Anna Protasio et al.Jan 10, 2012
Schistosomiasis is one of the most prevalent parasitic diseases, affecting millions of people in developing countries. Amongst the human-infective species, Schistosoma mansoni is also the most commonly used in the laboratory and here we present the systematic improvement of its draft genome. We used Sanger capillary and deep-coverage Illumina sequencing from clonal worms to upgrade the highly fragmented draft 380 Mb genome to one with only 885 scaffolds and more than 81% of the bases organised into chromosomes. We have also used transcriptome sequencing (RNA-seq) from four time points in the parasite's life cycle to refine gene predictions and profile their expression. More than 45% of predicted genes have been extensively modified and the total number has been reduced from 11,807 to 10,852. Using the new version of the genome, we identified trans-splicing events occurring in at least 11% of genes and identified clear cases where it is used to resolve polycistronic transcripts. We have produced a high-resolution map of temporal changes in expression for 9,535 genes, covering an unprecedented dynamic range for this organism. All of these data have been consolidated into a searchable format within the GeneDB (www.genedb.org) and SchistoDB (www.schistodb.net) databases. With further transcriptional profiling and genome sequencing increasingly accessible, the upgraded genome will form a fundamental dataset to underpin further advances in schistosome research.
0
Citation402
0
Save
0

Genomic Insights into the Origin of Parasitism in the Emerging Plant Pathogen Bursaphelenchus xylophilus

Taisei Kikuchi et al.Sep 1, 2011
Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a high-quality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite) stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in understanding the biology of this unusual parasite.
0
Citation386
0
Save
0

The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery

Ronald Laing et al.Jan 1, 2013
The small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans. Here we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates. The H. contortus genome and transcriptome provide an essential platform for postgenomic research in this and other important strongylid parasites.
0
Citation333
0
Save
0

Population genomics of the wild yeast Saccharomyces paradoxus : Quantifying the life cycle

Isheng Tsai et al.Mar 15, 2008
Most microbes have complex life cycles with multiple modes of reproduction that differ in their effects on DNA sequence variation. Population genomic analyses can therefore be used to estimate the relative frequencies of these different modes in nature. The life cycle of the wild yeast Saccharomyces paradoxus is complex, including clonal reproduction, outcrossing, and two different modes of inbreeding. To quantify these different aspects we analyzed DNA sequence variation in the third chromosome among 20 isolates from two populations. Measures of mutational and recombinational diversity were used to make two independent estimates of the population size. In an obligately sexual population these values should be approximately equal. Instead there is a discrepancy of about three orders of magnitude between our two estimates of population size, indicating that S. paradoxus goes through a sexual cycle approximately once in every 1,000 asexual generations. Chromosome III also contains the mating type locus ( MAT ), which is the most outbred part in the entire genome, and by comparing recombinational diversity as a function of distance from MAT we estimate the frequency of matings to be ≈94% from within the same tetrad, 5% with a clonemate after switching the mating type, and 1% outcrossed. Our study illustrates the utility of population genomic data in quantifying life cycles.
0
Citation315
0
Save
0

The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode

James Cotton et al.Mar 3, 2014
Abstract Background Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. Results We present the complete genome sequence of G. pallida , together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida , which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. Conclusions The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens.
0
Citation244
0
Save
Load More