Type I IFNs orchestrate the antiviral response. Interestingly, IFNA1 and IFNB1 genes are naturally intronless. Based on previous work, the splicing factor U2 Associated Factor 65 (U2AF65), encoded by U2AF2, and pre-mRNA Processing factor 19 (Prp19) function on the Cytoplasmic Accumulation Region Elements (CAR-E), affecting the nuclear export of intronless genes. We have previously shown that the loss of IWS1 phosphorylation by AKT3, promotes the alternative RNA splicing of U2AF2, resulting in novel transcripts lacking exon 2. This exon encodes part of the Serine-Rich (RS) domain of U2AF65, which is responsible for its binding with Prp19. Here, we show that IWS1 phosphorylation and the U2AF2 RNA splicing pattern affect the nuclear export of introless mRNAs. We also demonstrate that the same axis is required for the proper function of the CAR-Es. Mechanistically, whereas both U2AF65 isoforms bind CAR-E, the recruitment of Prp19 occurs only in cells expressing phosphorylated IWS1, promoting intronless genes export. Moreover, analysis of Lung adenocarcinoma patients showed that high p-IWS1 activity correlates with the assembly of the U2AF65/Prp19 complex and export of intronless genes, in vivo. Accordingly, the expression of type I IFNs was decreased in cells deficient in IWS1 phosphorylation and the viral infection was increased. Furthermore, following infection with oncolytic virus, we observed reduced activation of p-STAT1 and expression of Interferon Stimulated Genes (ISG), in cells stimulated by shIWS1-derived supernatant, or cells treated with the pan-AKT inhibitor, MK2206. Consistently, killing curves and apoptosis assays after infection with oncolytic viruses, revealed increased susceptibility upon the loss of IWS1, with subsequent activation of Caspase-mediated death. The treatment of the lung adenocarcinoma cells with MK2206, phenocopied the loss of IWS1 phosphorylation. These data identify a novel mechanism by which the AKT/p-IWS1 axis, by hijacking the epigenetic regulation of RNA splicing and processing, contributes to the resistance to oncolytic viral infection, suggesting that combined inhibition of the splicing machinery and AKT/p-IWS1 signals would sensitize tumors to oncolytic viral treatment.