JS
John Sedat
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(79% Open Access)
Cited by:
10,474
h-index:
75
/
i10-index:
143
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Spatial partitioning of the regulatory landscape of the X-inactivation centre

Elphège Nora et al.Apr 10, 2012
+12
L
B
E
High-order chromatin folding in topologically associating domains has a critical role in proper long-range transcriptional control around the Xist locus, and presumably throughout the genome. The spatial organization of the genome is linked to biological function, and advances in genomic technologies are allowing the conformation of chromosomes to be assessed genome wide. Two groups present complementary papers on the subject. Bing Ren and colleagues use Hi-C, an adaption of the chromosome conformation capture (3C) technique, to investigate the three-dimensional organization of the human and mouse genomes in embryonic stem cells and terminally differentiated cell types. Large, megabase-sized chromatin interaction domains, termed topological domains, are found to be a pervasive and conserved feature of genome organization. Edith Heard and colleagues use chromosome conformation capture carbon-copy (5C) technology and high-resolution microscopy to obtain a high-resolution map of the chromosomal interactions over a large region of the mouse X chromosome, including the X-inactivation centre. A series of discrete topologically associating domains is revealed, as is a previously unknown long intergenic RNA with a potential regulatory role. In eukaryotes transcriptional regulation often involves multiple long-range elements and is influenced by the genomic environment1. A prime example of this concerns the mouse X-inactivation centre (Xic), which orchestrates the initiation of X-chromosome inactivation (XCI) by controlling the expression of the non-protein-coding Xist transcript. The extent of Xic sequences required for the proper regulation of Xist remains unknown. Here we use chromosome conformation capture carbon-copy (5C)2 and super-resolution microscopy to analyse the spatial organization of a 4.5-megabases (Mb) region including Xist. We discover a series of discrete 200-kilobase to 1 Mb topologically associating domains (TADs), present both before and after cell differentiation and on the active and inactive X. TADs align with, but do not rely on, several domain-wide features of the epigenome, such as H3K27me3 or H3K9me2 blocks and lamina-associated domains. TADs also align with coordinately regulated gene clusters. Disruption of a TAD boundary causes ectopic chromosomal contacts and long-range transcriptional misregulation. The Xist/Tsix sense/antisense unit illustrates how TADs enable the spatial segregation of oppositely regulated chromosomal neighbourhoods, with the respective promoters of Xist and Tsix lying in adjacent TADs, each containing their known positive regulators. We identify a novel distal regulatory region of Tsix within its TAD, which produces a long intervening RNA, Linx. In addition to uncovering a new principle of cis-regulatory architecture of mammalian chromosomes, our study sets the stage for the full genetic dissection of the X-inactivation centre.
0
Citation2,798
0
Save
0

Three-Dimensional Resolution Doubling in Wide-Field Fluorescence Microscopy by Structured Illumination

Mats Gustafsson et al.Mar 8, 2008
+5
P
L
M
Structured illumination microscopy is a method that can increase the spatial resolution of wide-field fluorescence microscopy beyond its classical limit by using spatially structured illumination light. Here we describe how this method can be applied in three dimensions to double the axial as well as the lateral resolution, with true optical sectioning. A grating is used to generate three mutually coherent light beams, which interfere in the specimen to form an illumination pattern that varies both laterally and axially. The spatially structured excitation intensity causes normally unreachable high-resolution information to become encoded into the observed images through spatial frequency mixing. This new information is computationally extracted and used to generate a three-dimensional reconstruction with twice as high resolution, in all three dimensions, as is possible in a conventional wide-field microscope. The method has been demonstrated on both test objects and biological specimens, and has produced the first light microscopy images of the synaptonemal complex in which the lateral elements are clearly resolved.
0

Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy

Lothar Schermelleh et al.Jun 6, 2008
+9
S
P
L
Fluorescence light microscopy allows multicolor visualization of cellular components with high specificity, but its utility has until recently been constrained by the intrinsic limit of spatial resolution. We applied three-dimensional structured illumination microscopy (3D-SIM) to circumvent this limit and to study the mammalian nucleus. By simultaneously imaging chromatin, nuclear lamina, and the nuclear pore complex (NPC), we observed several features that escape detection by conventional microscopy. We could resolve single NPCs that colocalized with channels in the lamin network and peripheral heterochromatin. We could differentially localize distinct NPC components and detect double-layered invaginations of the nuclear envelope in prophase as previously seen only by electron microscopy. Multicolor 3D-SIM opens new and facile possibilities to analyze subcellular structures beyond the diffraction limit of the emitted light.
0
Citation1,087
0
Save
0

Polarization of Chemoattractant Receptor Signaling During Neutrophil Chemotaxis

Guy Servant et al.Feb 11, 2000
+3
P
O
G
Morphologic polarity is necessary for chemotaxis of mammalian cells. As a probe of intracellular signals responsible for this asymmetry, the pleckstrin homology domain of the AKT protein kinase (or protein kinase B), tagged with the green fluorescent protein (PHAKT-GFP), was expressed in neutrophils. Upon exposure of cells to chemoattractant, PHAKT-GFP is recruited selectively to membrane at the cell's leading edge, indicating an internal signaling gradient that is much steeper than that of the chemoattractant. Translocation of PHAKT-GFP is inhibited by toxin-B from Clostridium difficile, indicating that it requires activity of one or more Rho guanosine triphosphatases.
0

Fluorescence Microscopy: Reduced Photobleaching of Rhodamine and Fluorescein Protein Conjugates by n -Propyl Gallate

Haim Giloh et al.Sep 24, 1982
J
H
n -Propyl gallate (0.1 to 0.25 molar, in glycerol) reduces by a factor of 10 the rate of fading of fluorescence of cell structures labeled with tetramethylrhodamine or fluorescein-conjugated antibodies. Hence, prolonged photographic exposure of immunofluorescently labeled cells in the fluorescence microscope yields images with increased sensitivity, making feasible multiple data collection, as with serial optical sectioning.
0

Interphase chromosomes undergo constrained diffusional motion in living cells

Wallace Marshall et al.Dec 1, 1997
+6
D
A
W
Structural studies of fixed cells have revealed that interphase chromosomes are highly organized into specific arrangements in the nucleus, and have led to a picture of the nucleus as a static structure with immobile chromosomes held in fixed positions, an impression apparently confirmed by recent photobleaching studies. Functional studies of chromosome behavior, however, suggest that many essential processes, such as recombination, require interphase chromosomes to move around within the nucleus.To reconcile these contradictory views, we exploited methods for tagging specific chromosome sites in living cells of Saccharomyces cerevisiae with green fluorescent protein and in Drosophila melanogaster with fluorescently labeled topoisomerase ll. Combining these techniques with submicrometer single-particle tracking, we directly measured the motion of interphase chromatin, at high resolution and in three dimensions. We found that chromatin does indeed undergo significant diffusive motion within the nucleus, but this motion is constrained such that a given chromatin segment is free to move within only a limited subregion of the nucleus. Chromatin diffusion was found to be insensitive to metabolic inhibitors, suggesting that it results from classical Brownian motion rather than from active motility. Nocodazole greatly reduced chromatin confinement, suggesting a role for the cytoskeleton in the maintenance of nuclear architecture.We conclude that chromatin is free to undergo substantial Brownian motion, but that a given chromatin segment is confined to a subregion of the nucleus. This constrained diffusion is consistent with a highly defined nuclear architecture, but also allows enough motion for processes requiring chromosome motility to take place. These results lead to a model for the regulation of chromosome interactions by nuclear architecture.
0
Citation651
0
Save
0

Microtubule nucleation by γ-tubulin-containing rings in the centrosome

Michelle Moritz et al.Dec 7, 1995
+2
J
M
M
0

Early Transcription and Silencing of Cytokine Genes Underlie Polarization of T Helper Cell Subsets

Jane Grogan et al.Mar 1, 2001
+3
B
M
J
Naive CD4+ T cells activated through TCR/CD28 under Th1 or Th2 conditions expressed canonical cytokine patterns irrespective of cell division. Only cells that had divided fewer than four times were capable of reexpressing alternative cytokines when restimulated under opposing conditions. Although T cells transcribed both IFN-γ and IL-4 within hours in a Stat4-/Stat6-independent manner, neither T-bet nor GATA-3 was induced optimally without Stat signals, and polarized cytokine expression was not sustained. Cytokine genes were positioned apart from heterochromatin in resting T cell nuclei, consistent with rapid expression. After polarization, the majority of silenced cytokine alleles were repositioned to heterochromatin. Naive T cells transit through sequential stages of cytokine activation, commitment, silencing, and physical stabilization during polarization into differentiated effector subsets.
0
Citation495
0
Save
0

Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA.

Jodi Nunnari et al.Jul 1, 1997
+3
A
W
J
To gain insight into the process of mitochondrial transmission in yeast, we directly labeled mitochondrial proteins and mitochondrial DNA (mtDNA) and observed their fate after the fusion of two cells. To this end, mitochondrial proteins in haploid cells of opposite mating type were labeled with different fluorescent dyes and observed by fluorescence microscopy after mating of the cells. Parental mitochondrial protein markers rapidly redistributed and colocalized throughout zygotes, indicating that during mating, parental mitochondria fuse and their protein contents intermix, consistent with results previously obtained with a single parentally derived protein marker. Analysis of the three-dimensional structure and dynamics of mitochondria in living cells with wide-field fluorescence microscopy indicated that mitochondria form a single dynamic network, whose continuity is maintained by a balanced frequency of fission and fusion events. Thus, the complete mixing of mitochondrial proteins can be explained by the formation of one continuous mitochondrial compartment after mating. In marked contrast to the mixing of parental mitochondrial proteins after fusion, mtDNA (labeled with the thymidine analogue 5-bromodeoxyuridine) remained distinctly localized to one half of the zygotic cell. This observation provides a direct explanation for the genetically observed nonrandom patterns of mtDNA transmission. We propose that anchoring of mtDNA within the organelle is linked to an active segregation mechanism that ensures accurate inheritance of mtDNA along with the organelle.
0
Citation492
0
Save
Load More