SB
Supreet Bola
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
53
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Using DNA sequencing data to quantify T cell fraction and therapy response

Robert Bentham et al.Sep 8, 2021
+289
T
K
R
The immune microenvironment influences tumour evolution and can be both prognostic and predict response to immunotherapy1,2. However, measurements of tumour infiltrating lymphocytes (TILs) are limited by a shortage of appropriate data. Whole-exome sequencing (WES) of DNA is frequently performed to calculate tumour mutational burden and identify actionable mutations. Here we develop T cell exome TREC tool (T cell ExTRECT), a method for estimation of T cell fraction from WES samples using a signal from T cell receptor excision circle (TREC) loss during V(D)J recombination of the T cell receptor-α gene (TCRA (also known as TRA)). TCRA T cell fraction correlates with orthogonal TIL estimates and is agnostic to sample type. Blood TCRA T cell fraction is higher in females than in males and correlates with both tumour immune infiltrate and presence of bacterial sequencing reads. Tumour TCRA T cell fraction is prognostic in lung adenocarcinoma. Using a meta-analysis of tumours treated with immunotherapy, we show that tumour TCRA T cell fraction predicts immunotherapy response, providing value beyond measuring tumour mutational burden. Applying T cell ExTRECT to a multi-sample pan-cancer cohort reveals a high diversity of the degree of immune infiltration within tumours. Subclonal loss of 12q24.31–32, encompassing SPPL3, is associated with reduced TCRA T cell fraction. T cell ExTRECT provides a cost-effective technique to characterize immune infiltrate alongside somatic changes. A robust, cost-effective technique based on whole-exome sequencing data can be used to characterize immune infiltrates, relate the extent of these infiltrates to somatic changes in tumours, and enables prediction of tumour responses to immune checkpoint inhibition therapy.
4
Citation47
1
Save
0

Mixed responses to targeted therapy driven by chromosomal instability through p53 dysfunction and genome doubling

Sebastijan Hobor et al.Jun 13, 2024
+292
C
M
S
Abstract The phenomenon of mixed/heterogenous treatment responses to cancer therapies within an individual patient presents a challenging clinical scenario. Furthermore, the molecular basis of mixed intra-patient tumor responses remains unclear. Here, we show that patients with metastatic lung adenocarcinoma harbouring co-mutations of EGFR and TP53 , are more likely to have mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI), compared to those with an EGFR mutation alone. The combined presence of whole genome doubling (WGD) and TP53 co-mutations leads to increased genome instability and genomic copy number aberrations in genes implicated in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53 -mutant model system, we provide evidence that WGD provides diverse routes to drug resistance by increasing the probability of acquiring copy-number gains or losses relative to non-WGD cells. These data provide a molecular basis for mixed tumor responses to targeted therapy, within an individual patient, with implications for therapeutic strategies.
0
Citation4
0
Save
0

Representation of genomic intratumor heterogeneity in multi-region non-small cell lung cancer patient-derived xenograft models

J.F. Lester et al.May 31, 2024
+271
D
A
J
Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling.
0
Citation2
0
Save
0

Genesis: A Modular Protein Language Modelling Approach to Immunogenicity Prediction

Hugh O’Brien et al.May 26, 2024
+13
L
M
H
Abstract Neoantigen immunogenicity prediction is a highly challenging problem in the development of personalised medicines. Low reactivity rates in called neoantigens result in a difficult prediction scenario with limited training datasets. Here we describe Genesis, a modular protein language modelling approach to immunogenicity prediction for CD8+ reactive epitopes. Genesis comprises of a pMHC encoding module trained on three pMHC prediction tasks, an optional TCR encoding module and a set of context specific immunogenicity prediction head modules. Compared with state-of-the-art models for each task, Genesis’ encoding module performs comparably or better on pMHC binding affinity, eluted ligand prediction and stability tasks. Genesis outperforms all compared models on pMHC immunogenicity prediction (Area under the receiver operating characteristic curve=0.619, average precision: 0.514), with a 7% increase in average precision compared to the next best model. Genesis shows further improved performance on immunogenicity prediction with the integration of TCR context information. Genesis performance is further analysed for interpretability, which locates areas of weakness found across existing immunogenicity models and highlight possible biases in public datasets.