WM
Whitney McFadden
Author with expertise in Genomic Imprinting and Parental Gene Expression Control
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(0% Open Access)
Cited by:
0
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transcriptomic Imputation of Bipolar Disorder and Bipolar subtypes reveals 29 novel associated genes

Laura Huckins et al.Nov 21, 2017
Bipolar disorder is a complex neuropsychiatric disorder presenting with episodic mood disturbances. In this study we use a transcriptomic imputation approach to identify novel genes and pathways associated with bipolar disorder, as well as three diagnostically and genetically distinct subtypes. Transcriptomic imputation approaches leverage well-curated and publicly available eQTL reference panels to create gene-expression prediction models, which may then be applied to impute genetically regulated gene expression (GREX) in large GWAS datasets. By testing for association between phenotype and GREX, rather than genotype, we hope to identify more biologically interpretable associations, and thus elucidate more of the genetic architecture of bipolar disorder. We applied GREX prediction models for 13 brain regions (derived from CommonMind Consortium and GTEx eQTL reference panels) to 21,488 bipolar cases and 54,303 matched controls, constituting the largest transcriptomic imputation study of bipolar disorder (BPD) to date. Additionally, we analyzed three specific BPD subtypes, including 14,938 individuals with subtype 1 (BD-I), 3,543 individuals with subtype 2 (BD-II), and 1,500 individuals with schizoaffective subtype (SAB). We identified 125 gene-tissue associations with BPD, of which 53 represent independent associations after FINEMAP analysis. 29/53 associations were novel; i.e., did not lie within 1Mb of a locus identified in the recent PGC-BD GWAS. We identified 37 independent BD-I gene-tissue associations (10 novel), 2 BD-II associations, and 2 SAB associations. Our BPD, BD-I and BD-II associations were significantly more likely to be differentially expressed in post-mortem brain tissue of BPD, BD-I and BD-II cases than we might expect by chance. Together with our pathway analysis, our results support long-standing hypotheses about bipolar disorder risk, including a role for oxidative stress and mitochondrial dysfunction, the post-synaptic density, and an enrichment of circadian rhythm and clock genes within our results.
0

Integrative analysis of rare variants and pathway information shows convergent results between immune pathways, drug targets and epilepsy genes

Hoang Nguyen et al.Sep 9, 2018
Trio family and case-control studies of next-generation sequencing data have proven integral to understanding the contribution of rare inherited and de novo single-nucleotide variants to the genetic architecture of complex disease. Ideally, such studies should identify individual risk genes of moderate to large effect size to generate novel treatment hypotheses for further follow-up. However, due to insufficient power, gene set enrichment analyses have come to be relied upon for detecting differences between cases and controls, implicating sets of hundreds of genes rather than specific targets for further investigation. Here, we present a Bayesian statistical framework, termed gTADA, that integrates gene-set membership information with gene-level de novo and rare inherited case-control counts, to prioritize risk genes with excess rare variant burden within enriched gene sets. Applying gTADA to available whole-exome sequencing datasets for several neuropsychiatric conditions, we replicated previously reported gene set enrichments and identified novel risk genes. For epilepsy, gTADA prioritized 40 risk genes (posterior probabilities > 0.95), 6 of which replicate in an independent whole-genome sequencing study. In addition, 30/40 genes are novel genes. We found that epilepsy genes had high protein-protein interaction (PPI) network connectivity, and show specific expression during human brain development. Some of the top prioritized EPI genes were connected to a PPI subnetwork of immune genes and show specific expression in prenatal microglia. We also identified multiple enriched drug-target gene sets for EPI which included immunostimulants as well as known antiepileptics. Immune biology was supported specifically by case-control variants from familial epilepsies rather than do novo mutations in generalized encephalitic epilepsy.
0

Identifying tissues implicated in Anorexia Nervosa using Transcriptomic Imputation

Laura Huckins et al.Feb 14, 2018
Anorexia nervosa (AN) is a complex and serious eating disorder, occurring in ~1% of individuals. Despite having the highest mortality rate of any psychiatric disorder, little is known about the aetiology of AN, and few effective treatments exist. Global efforts to collect large sample sizes of individuals with AN have been highly successful, and a recent study consequently identified the first genome-wide significant locus involved in AN. This result, coupled with other recent studies and epidemiological evidence, suggest that previous characterizations of AN as a purely psychiatric disorder are over-simplified. Rather, both neurological and metabolic pathways may also be involved. In order to elucidate more of the system-specific aetiology of AN, we applied transcriptomic imputation methods to 3,495 cases and 10,982 controls, collected by the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED). Transcriptomic Imputation (TI) methods approaches use machine-learning methods to impute tissue-specific gene expression from large genotype data using curated eQTL reference panels. These offer an exciting opportunity to compare gene associations across neurological and metabolic tissues. Here, we applied CommonMind Consortium (CMC) and GTEx-derived gene expression prediction models for 13 brain tissues and 12 tissues with potential metabolic involvement (adipose, adrenal gland, 2 colon, 3 esophagus, liver, pancreas, small intestine, spleen, stomach). We identified 35 significant gene-tissue associations within the large chromosome 12 region described in the recent PGC-ED GWAS. We applied forward stepwise conditional analyses and FINEMAP to associations within this locus to identify putatively causal signals. We identified four independently associated genes; RPS26, C12orf49, SUOX, and RDH16. We also identified two further genome-wide significant gene-tissue associations, both in brain tissues; REEP5, in the dorso-lateral pre-frontal cortex (DLPFC; p=8.52x10-07), and CUL3, in the caudate basal ganglia (p=1.8x10-06). These genes are significantly enriched for associations with anthropometric phenotypes in the UK BioBank, as well as multiple psychiatric, addiction, and appetite/satiety pathways. Our results support a model of AN risk influenced by both metabolic and psychiatric factors.