CZ
Chun Zhang
Author with expertise in Adult Neurogenesis and Brain Development
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(88% Open Access)
Cited by:
6,700
h-index:
37
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation

Timothy McKinsey et al.Nov 1, 2000
Members of the myocyte enhancer factor-2 (MEF2) family of transcription factors associate with myogenic basic helix-loop-helix transcription factors such as MyoD to activate skeletal myogenesis. MEF2 proteins also interact with the class II histone deacetylases HDAC4 and HDAC5, resulting in repression of MEF2-dependent genes. Execution of the muscle differentiation program requires release of MEF2 from repression by HDACs, which are expressed constitutively in myoblasts and myotubes. Here we show that HDAC5 shuttles from the nucleus to the cytoplasm when myoblasts are triggered to differentiate. Calcium/calmodulin-dependent protein kinase (CaMK) signalling, which stimulates myogenesis and prevents formation of MEF2-HDAC complexes, also induces nuclear export of HDAC4 and HDAC5 by phosphorylation of these transcriptional repressors. An HDAC5 mutant lacking two CaMK phosphorylation sites is resistant to CaMK-mediated nuclear export and acts as a dominant inhibitor of skeletal myogenesis, whereas a cytoplasmic HDAC5 mutant is unable to block efficiently the muscle differentiation program. Our results highlight a mechanism for transcriptional regulation through signal- and differentiation-dependent nuclear export of a chromatin-remodelling enzyme, and suggest that nucleo-cytoplasmic trafficking of HDACs is involved in the control of cellular differentiation.
0

Histone Deacetylases 5 and 9 Govern Responsiveness of the Heart to a Subset of Stress Signals and Play Redundant Roles in Heart Development

Shurong Chang et al.Sep 14, 2004
The adult heart responds to stress signals by hypertrophic growth, which is often accompanied by activation of a fetal cardiac gene program and eventual cardiac demise. We showed previously that histone deacetylase 9 (HDAC9) acts as a suppressor of cardiac hypertrophy and that mice lacking HDAC9 are sensitized to cardiac stress signals. Here we report that mice lacking HDAC5 display a similar cardiac phenotype and develop profoundly enlarged hearts in response to pressure overload resulting from aortic constriction or constitutive cardiac activation of calcineurin, a transducer of cardiac stress signals. In contrast, mice lacking either HDAC5 or HDAC9 show a hypertrophic response to chronic β-adrenergic stimulation identical to that of wild-type littermates, suggesting that these HDACs modulate a specific subset of cardiac stress response pathways. We also show that compound mutant mice lacking both HDAC5 and HDAC9 show a propensity for lethal ventricular septal defects and thin-walled myocardium. These findings reveal central roles for HDACs 5 and 9 in the suppression of a subset of cardiac stress signals as well as redundant functions in the control of cardiac development.
0
Citation582
0
Save
0

Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5

Timothy McKinsey et al.Dec 12, 2000
Skeletal muscle differentiation is controlled by interactions between myocyte enhancer factor-2 (MEF2) and myogenic basic helix—loop–helix transcription factors. Association of MEF2 with histone deacetylases (HDAC) -4 and -5 results in repression of MEF2 target genes and inhibition of myogenesis. Calcium/calmodulin-dependent protein kinase (CaMK) signaling promotes myogenesis by disrupting MEF2–HDAC complexes and stimulating HDAC nuclear export. To further define the mechanisms that confer CaMK responsiveness to HDAC4 and -5, we performed yeast two-hybrid screens to identify HDAC-interacting factors. These screens revealed interactions between HDAC4 and members of the 14-3-3 family of proteins, which function as signal-dependent intracellular chaperones. HDAC4 binds constitutively to 14-3-3 in yeast and mammalian cells, whereas HDAC5 binding to 14-3-3 is largely dependent on CaMK signaling. CaMK phosphorylates serines -259 and -498 in HDAC5, which subsequently serve as docking sites for 14-3-3. Our studies suggest that 14-3-3 binding to HDAC5 is required for CaMK-dependent disruption of MEF2–HDAC complexes and nuclear export of HDAC5, and implicate 14-3-3 as a signal-dependent regulator of muscle cell differentiation.
0

In vivo reprogramming of astrocytes to neuroblasts in the adult brain

Wenze Niu et al.Sep 22, 2013
Adult differentiated cells can be reprogrammed into pluripotent stem cells or lineage-restricted proliferating precursors in culture; however, this has not been demonstrated in vivo. Here, we show that the single transcription factor SOX2 is sufficient to reprogram resident astrocytes into proliferative neuroblasts in the adult mouse brain. These induced adult neuroblasts (iANBs) persist for months and can be generated even in aged brains. When supplied with BDNF and noggin or when the mice are treated with a histone deacetylase inhibitor, iANBs develop into electrophysiologically mature neurons, which functionally integrate into the local neural network. Our results demonstrate that adult astrocytes exhibit remarkable plasticity in vivo, a feature that might have important implications in regeneration of the central nervous system using endogenous patient-specific glial cells. Adult differentiated cells can be reprogrammed to lineage-restricted proliferating neural precursors in vitro. Zhang and colleagues show that the transcription factor SOX2 is sufficient to reprogram resident astrocytes in the mouse brain to neuroblasts that can proliferate and differentiate following treatment with histone deacetylase inhibitors and differentiating factors BDNF and noggin.
0
Citation440
0
Save
Load More