ZG
Zachary Gerring
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
487
h-index:
17
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
23

Polygenic Prediction of Molecular Traits using Large-Scale Meta-analysis Summary Statistics

Oliver Pain et al.Nov 25, 2022
Abstract Introduction Transcriptome-wide association study (TWAS) integrates expression quantitative trait loci (eQTL) data with genome-wide association study (GWAS) results to infer differential expression. TWAS uses multi-variant models trained using individual-level genotype-expression datasets, but methodological development is required for TWAS to utilise larger eQTL summary statistics. Methods TWAS models predicting gene expression were derived using blood-based eQTL summary statistics from eQTLGen, the Young Finns Study (YFS), and MetaBrain. Summary statistic polygenic scoring methods were used to derive TWAS models, evaluating their predictive utility in GTEx v8. We investigated gene inclusion criteria and omnibus tests for aggregating TWAS associations for a given gene. We performed a schizophrenia TWAS using summary statistic-based TWAS models, comparing results to existing resources and methods. Results TWAS models derived using eQTL summary statistics performed comparably to models derived using individual-level data. Multi-variant TWAS models significantly improved prediction over single variant models for 8.6% of genes. TWAS models derived using eQTLGen summary statistics significantly improved prediction over models derived using a smaller individual-level dataset. The eQTLGen-based schizophrenia TWAS, using the ACAT omnibus test to aggregate associations for each gene, identified novel significant and colocalised associations compared to summary-based mendelian randomisation (SMR) and SMR-multi. Conclusions Using multi-variant TWAS models and larger eQTL summary statistic datasets can improve power to detect differential expression associations. We provide TWAS models based on eQTLGen and MetaBrain summary statistics, and software to easily derive and apply summary statistic-based TWAS models based on eQTL and other molecular QTL datasets released in the future.
8

A systematic analysis of genetically regulated differences in gene expression and the role of co-expression networks across 16 psychiatric disorders and substance use phenotypes

Zachary Gerring et al.Jan 30, 2021
ABSTRACT Genome-wide association studies (GWASs) have identified thousands of risk loci for many psychiatric and substance use phenotypes, however the biological consequences of these loci remain largely unknown. We performed a transcriptome-wide association study of 10 psychiatric disorders and 6 substance use phenotypes (collectively termed “mental health phenotypes”) using expression quantitative trait loci data from 532 prefrontal cortex samples. We estimated the correlation due to predicted genetically regulated expression between pairs of mental health phenotypes, and compared the results with the genetic correlations. We identified 1,645 genes with at least one significant trait association, comprising 2,176 significant associations across the 16 mental health phenotypes of which 572 (26%) are novel. Overall, the transcriptomic correlations for phenotype pairs were significantly higher than the respective genetic correlations. For example, attention deficit hyperactivity disorder and autism spectrum disorder, both childhood developmental disorders, showed a much higher transcriptomic correlation (r=0.84) than genetic correlation (r=0.35). Finally, we tested the enrichment of phenotype-associated genes in gene co-expression networks built from prefrontal cortex. Phenotype-associated genes were enriched in multiple gene co-expression modules and the implicated modules contained genes involved in mRNA splicing and glutamatergic receptors, among others. Together, our results highlight the utility of gene expression data in the understanding of functional gene mechanisms underlying psychiatric disorders and substance use phenotypes.
0

The genetic architecture of substance use and its diverse correlations with mental health traits

Briar Wormington et al.Sep 16, 2024
Although harmful substance use is common and represented by shared symptom features and high genetic correlations, the underlying genetic relationships between substance use traits have not been fully explored. We have investigated the genetic architecture of substance use traits through exploratory and confirmatory factor analyses using genomic structural equation modeling (Genomic SEM), and explored genetic correlations between different aspects of substance use and mental health-related traits. Genomic SEM was used to identify latent factors representing the relationships between 14 substance use traits (alcohol, nicotine, cannabis and opioid use), and to confirm or modify existing latent factors for 38 mental health-related traits. A bi-factor model best explained the genetic overlap between substance use traits, including a general substance use factor and two sub-factors representing genetic liability specific to alcohol use or smoking. The SNP-based heritability of these factors ranged from 2 to 7 % and each factor had 10 or more independent significant SNPs identified. Bivariate correlations revealed patterns of genetic overlap with other mental health-related factors unique to each substance use factor. Variations in the genetic overlap between psychiatric traits and different aspects of substance use can be used to further investigate the pleiotropy present between these traits, and explore commonalities in etiology.
0

A Gene Co-expression Network-based Analysis of Multiple Brain Tissues Reveals Novel Genes and Molecular Pathways Underlying Major Depression

Zachary Gerring et al.Mar 28, 2019
Major depression is a common and severe psychiatric disorder with a highly polygenic genetic architecture. Genome-wide association studies have successfully identified multiple independent genetic loci that harbour variants associated with major depression, but the exact causal genes and biological mechanisms are largely unknown. Tissue-specific network approaches may identify molecular mechanisms underlying major depression and provide a biological substrate for integrative analyses. We provide a framework for the identification of individual risk genes and gene co-expression networks using genome-wide association summary statistics and gene expression information across multiple human brain tissues and whole blood. We developed a novel gene-based method called eMAGMA that leverages multi-tissue eQTL information to identify 99 biologically plausible risk genes associated with major depression, of which 58 are novel. Among these novel associations is Complement Factor 4A (C4A), recently implicated in schizophrenia through its role in synaptic pruning during postnatal development. Major depression risk genes were enriched in gene co-expression modules in multiple brain tissues and the implicated gene modules contained genes involved in synaptic signalling, neuronal development, and cell transport pathways. Modules enriched with major depression signals were strongly preserved across brain tissues, but were weakly preserved in whole blood, highlighting the importance of using disease-relevant tissues in genetic studies of psychiatric traits. We identified tissue-specific genes and gene co-expression networks associated with major depression. Our novel analytical framework can be used to gain fundamental insights into the functioning of the nervous system in major depression and other brain-related traits.