PD
Peter Dube
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
1,029
h-index:
27
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Activation of innate immune antiviral responses by Nod2

Ahmed Sabbah et al.Aug 23, 2009
+5
R
T
A
The intracellular 'biosensor' Nod2 responds to bacterial peptidoglycan by inducing activation of the transcription factor NF-κB. Bose and colleagues now find that Nod2 can also function as a cytoplasmic viral pattern-recognition receptor. Pattern-recognition receptors (PRRs), including Toll-like receptors (TLRs) and RIG-like helicase (RLH) receptors, are involved in innate immune antiviral responses. Here we show that nucleotide-binding oligomerization domain 2 (Nod2) can also function as a cytoplasmic viral PRR by triggering activation of interferon-regulatory factor 3 (IRF3) and production of interferon-β (IFN-β). After recognition of a viral ssRNA genome, Nod2 used the adaptor protein MAVS to activate IRF3. Nod2-deficient mice failed to produce interferon efficiently and showed enhanced susceptibility to virus-induced pathogenesis. Thus, the function of Nod2 as a viral PRR highlights the important function of Nod2 in host antiviral defense mechanisms.
0
Citation675
0
Save
0

Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M pro and cathepsin L

M. Sacco et al.Nov 7, 2020
+14
P
C
M
The main protease (Mpro) of SARS-CoV-2 is a key antiviral drug target. While most Mpro inhibitors have a γ-lactam glutamine surrogate at the P1 position, we recently found that several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II and XII, which are also active against human cathepsin L, a host protease that is important for viral entry. In this study, we solved x-ray crystal structures of Mpro in complex with calpain inhibitors II and XII and three analogs of GC-376 The structure of Mpro with calpain inhibitor II confirmed that the S1 pocket can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. The structure of calpain inhibitor XII revealed an unexpected, inverted binding pose. Together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of dual inhibitors as SARS-CoV-2 antivirals.
11

Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against Mpro and cathepsin L

M. Sacco et al.Jul 27, 2020
+14
X
Y
M
Abstract The main protease (M pro ) of SARS-CoV-2, the pathogen responsible for the COVID-19 pandemic, is a key antiviral drug target. While most SARS-CoV-2 M pro inhibitors have a γ-lactam glutamine surrogate at the P1 position, we recently discovered several M pro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II/XII, which are also active against human cathepsin L, a host-protease that is important for viral entry. To determine the binding mode of these calpain inhibitors and establish a structure-activity relationship, we solved X-ray crystal structures of M pro in complex with calpain inhibitors II and XII, and three analogues of GC-376 , one of the most potent M pro inhibitors in vitro . The structure of M pro with calpain inhibitor II confirmed the S1 pocket of M pro can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. Interestingly, the structure of calpain inhibitor XII revealed an unexpected, inverted binding pose where the P1’ pyridine inserts in the S1 pocket and the P1 norvaline is positioned in the S1’ pocket. The overall conformation is semi-helical, wrapping around the catalytic core, in contrast to the extended conformation of other peptidomimetic inhibitors. Additionally, the structures of three GC-376 analogues UAWJ246 , UAWJ247 , and UAWJ248 provide insight to the sidechain preference of the S1’, S2, S3 and S4 pockets, and the superior cell-based activity of the aldehyde warhead compared with the α-ketoamide. Taken together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of M pro inhibitors as SARS-CoV-2 antivirals.
11
Citation14
0
Save
5

Hetero-bivalent Nanobodies Provide Broad-spectrum Protection against SARS-CoV-2 Variants of Concern including Omicron

Huan Ma et al.Mar 8, 2022
+12
S
H
H
Abstract Following Delta, Omicron variant triggered a new wave of SARS-CoV-2 infection globally, adaptive evolution of the virus may not stop, the development of broad-spectrum antivirals is still urgent. We previously developed two hetero-bivalent nanobodies with potent neutralization against original WT SARS-CoV-2, termed aRBD-2-5 and aRBD-2-7, by fusing aRBD-2 with aRBD-5 or aRBD-7, respectively. Here, we resolved crystal structures of these nanobodies in complex with RBD, and found the epitope of aRBD-2 differs from that of aRBD-5, aRBD-7. aRBD-2 binds to a conserved epitope which renders its binding activity to all variants of concern (VOCs) including Omicron. Interestingly, although monovalent aRBD-5 and aRBD-7 lost binding to some variants, they effectively improved the overall affinity when transformed into the hetero-bivalent form after being fused with aRBD-2. Consistent with the high binding affinities, aRBD-2-5-Fc and aRBD-2-7-Fc exhibited ultra-potent neutralization to all five VOCs; particularly, aRBD-2-5-Fc neutralized authentic virus of Beta, Delta and Omicron with the IC 50 of 5.98∼9.65 ng/mL or 54.3∼87.6 pM. Importantly, aRBD-2-5-Fc provided in vivo prophylactic protection for mice against WT and mouse-adapted SARS-CoV-2, and provided full protection against Omicron in hamster model when administrated either prophylactically or therapeutically. Taken together, we found a conserved epitope on RBD, and hetero-bivalent nanobodies had increased affinity for VOCs over its monovalent form, and provided potent and broad-spectrum protection both in vitro and in vivo against all tested major variants, and potentially future emerging variants. Our strategy provides a new solution in the development of therapeutic antibodies for COVID-19 caused by newly emergent VOCs.
5
Citation1
0
Save
0

Influenza-induced oxidative stress sensitizes lung cells to bacterial toxin-mediated necroptosis

Norberto González-Juarbe et al.Feb 21, 2020
+8
A
A
N
Rationale: Pneumonia caused by Influenza A virus (IAV) co- and secondary bacterial infections are characterized by their severity. Previously we have shown that pore-forming toxin (PFT)-mediated necroptosis is a key driver of acute lung injury during bacterial pneumonia. Here, we evaluate the impact of IAV on PFT-induced acute lung injury during co- and secondary Streptococcus pneumoniae (Spn) infection. Objectives: Determine the impact of IAV infection on bacterial PFT-mediated lung epithelial cell (LEC) necroptosis. Determine the molecular basis for increased sensitivity and if inhibition of necroptosis or oxidative stress blocks IAV sensitization of LEC to PFT. Methods: Mice and cells were challenged with IAV followed by Spn. Necroptosis was monitored by measuring cell death at fixed time points post-infection and immunofluorescent detection of necroptosis. Wildtype mice and LEC were treated with necroptosis inhibitors. Necroptosis effector molecule MLKL deficiency was tested for infection synergy. Oxidative damage to DNA and lipids as result of infection was measured in vitro and in vivo. Necroptosis and anti-oxidant therapy efficacy to reduce disease severity was tested in vivo. Measurements and Main Results: IAV synergistically sensitized LEC for PFT-mediated necroptosis in vitro and in murine models of Spn co-infection and secondary infection. Pharmacological induction of oxidative stress sans virus sensitized cells for PFT-mediated necroptosis. Necroptosis inhibition reduced disease severity during secondary bacterial infection. Conclusions: IAV-induced oxidative stress sensitizes LEC for PFT-mediated necroptosis. This is a new molecular explanation for severe influenza-associated bacterial infections. Necroptosis inhibitors are potential therapeutic strategies to reduce IAV-primed bacterial pneumonia severity.