DS
Dirk Schnappinger
Author with expertise in Tuberculosis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
25
(84% Open Access)
Cited by:
5,554
h-index:
55
/
i10-index:
108
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages

Dirk Schnappinger et al.Sep 1, 2003
Little is known about the biochemical environment in phagosomes harboring an infectious agent. To assess the state of this organelle we captured the transcriptional responses of Mycobacterium tuberculosis (MTB) in macrophages from wild-type and nitric oxide (NO) synthase 2–deficient mice before and after immunologic activation. The intraphagosomal transcriptome was compared with the transcriptome of MTB in standard broth culture and during growth in diverse conditions designed to simulate features of the phagosomal environment. Genes expressed differentially as a consequence of intraphagosomal residence included an interferon γ– and NO-induced response that intensifies an iron-scavenging program, converts the microbe from aerobic to anaerobic respiration, and induces a dormancy regulon. Induction of genes involved in the activation and β-oxidation of fatty acids indicated that fatty acids furnish carbon and energy. Induction of σE-dependent, sodium dodecyl sulfate–regulated genes and genes involved in mycolic acid modification pointed to damage and repair of the cell envelope. Sentinel genes within the intraphagosomal transcriptome were induced similarly by MTB in the lungs of mice. The microbial transcriptome thus served as a bioprobe of the MTB phagosomal environment, showing it to be nitrosative, oxidative, functionally hypoxic, carbohydrate poor, and capable of perturbing the pathogen's cell envelope.
0

Inhibition of Respiration by Nitric Oxide Induces a Mycobacterium tuberculosis Dormancy Program

Martin Voskuil et al.Sep 1, 2003
An estimated two billion persons are latently infected with Mycobacterium tuberculosis. The host factors that initiate and maintain this latent state and the mechanisms by which M. tuberculosis survives within latent lesions are compelling but unanswered questions. One such host factor may be nitric oxide (NO), a product of activated macrophages that exhibits antimycobacterial properties. Evidence for the possible significance of NO comes from murine models of tuberculosis showing progressive infection in animals unable to produce the inducible isoform of NO synthase and in animals treated with a NO synthase inhibitor. Here, we show that O2 and low, nontoxic concentrations of NO competitively modulate the expression of a 48-gene regulon, which is expressed in vivo and prepares bacilli for survival during long periods of in vitro dormancy. NO was found to reversibly inhibit aerobic respiration and growth. A heme-containing enzyme, possibly the terminal oxidase in the respiratory pathway, likely senses and integrates NO and O2 levels and signals the regulon. These data lead to a model postulating that, within granulomas, inhibition of respiration by NO production and O2 limitation constrains M. tuberculosis replication rates in persons with latent tuberculosis.
0

Regulation of theMycobacterium tuberculosishypoxic response gene encoding α-crystallin

David Sherman et al.Jun 19, 2001
Unlike many pathogens that are overtly toxic to their hosts, the primary virulence determinant of Mycobacterium tuberculosis appears to be its ability to persist for years or decades within humans in a clinically latent state. Since early in the 20th century latency has been linked to hypoxic conditions within the host, but the response of M. tuberculosis to a hypoxic signal remains poorly characterized. The M. tuberculosis α-crystallin ( acr ) gene is powerfully and rapidly induced at reduced oxygen tensions, providing us with a means to identify regulators of the hypoxic response. Using a whole genome microarray, we identified >100 genes whose expression is rapidly altered by defined hypoxic conditions. Numerous genes involved in biosynthesis and aerobic metabolism are repressed, whereas a high proportion of the induced genes have no known function. Among the induced genes is an apparent operon that includes the putative two-component response regulator pair Rv3133c/Rv3132c. When we interrupted expression of this operon by targeted disruption of the upstream gene Rv3134c, the hypoxic regulation of acr was eliminated. These results suggest a possible role for Rv3132c/3133c/3134c in mycobacterial latency.
0
Citation718
0
Save
0

Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis

Michael DeJesus et al.Jan 18, 2017
ABSTRACT For decades, identifying the regions of a bacterial chromosome that are necessary for viability has relied on mapping integration sites in libraries of random transposon mutants to find loci that are unable to sustain insertion. To date, these studies have analyzed subsaturated libraries, necessitating the application of statistical methods to estimate the likelihood that a gap in transposon coverage is the result of biological selection and not the stochasticity of insertion. As a result, the essentiality of many genomic features, particularly small ones, could not be reliably assessed. We sought to overcome this limitation by creating a completely saturated transposon library in Mycobacterium tuberculosis . In assessing the composition of this highly saturated library by deep sequencing, we discovered that a previously unknown sequence bias of the Himar1 element rendered approximately 9% of potential TA dinucleotide insertion sites less permissible for insertion. We used a hidden Markov model of essentiality that accounted for this unanticipated bias, allowing us to confidently evaluate the essentiality of features that contained as few as 2 TA sites, including open reading frames (ORF), experimentally identified noncoding RNAs, methylation sites, and promoters. In addition, several essential regions that did not correspond to known features were identified, suggesting uncharacterized functions that are necessary for growth. This work provides an authoritative catalog of essential regions of the M. tuberculosis genome and a statistical framework for applying saturating mutagenesis to other bacteria. IMPORTANCE Sequencing of transposon-insertion mutant libraries has become a widely used tool for probing the functions of genes under various conditions. The Himar1 transposon is generally believed to insert with equal probabilities at all TA dinucleotides, and therefore its absence in a mutant library is taken to indicate biological selection against the corresponding mutant. Through sequencing of a saturated Himar1 library, we found evidence that TA dinucleotides are not equally permissive for insertion. The insertion bias was observed in multiple prokaryotes and influences the statistical interpretation of transposon insertion (TnSeq) data and characterization of essential genomic regions. Using these insights, we analyzed a fully saturated TnSeq library for M. tuberculosis , enabling us to generate a comprehensive catalog of in vitro essentiality, including ORFs smaller than those found in any previous study, small (noncoding) RNAs (sRNAs), promoters, and other genomic features.
0
Citation530
0
Save
0

Reprogramming of the Macrophage Transcriptome in Response to Interferon-γ and Mycobacterium tuberculosis

Sabine Ehrt et al.Oct 15, 2001
Macrophage activation determines the outcome of infection by Mycobacterium tuberculosis (Mtb). Interferon-γ (IFN-γ) activates macrophages by driving Janus tyrosine kinase (JAK)/signal transducer and activator of transcription–dependent induction of transcription and PKR-dependent suppression of translation. Microarray-based experiments reported here enlarge this picture. Exposure to IFN-γ and/or Mtb led to altered expression of 25% of the monitored genome in macrophages. The number of genes suppressed by IFN-γ exceeded the number of genes induced, and much of the suppression was transcriptional. Five times as many genes related to immunity and inflammation were induced than suppressed. Mtb mimicked or synergized with IFN-γ more than antagonized its actions. Phagocytosis of nonviable Mtb or polystyrene beads affected many genes, but the transcriptional signature of macrophages infected with viable Mtb was distinct. Studies involving macrophages deficient in inducible nitric oxide synthase and/or phagocyte oxidase revealed that these two antimicrobial enzymes help orchestrate the profound transcriptional remodeling that underlies macrophage activation.
0
Citation458
0
Save
0

Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform

Jeremy Rock et al.Feb 6, 2017
The development of new drug regimens that allow rapid, sterilizing treatment of tuberculosis has been limited by the complexity and time required for genetic manipulations in Mycobacterium tuberculosis. CRISPR interference (CRISPRi) promises to be a robust, easily engineered and scalable platform for regulated gene silencing. However, in M. tuberculosis, the existing Streptococcus pyogenes Cas9-based CRISPRi system is of limited utility because of relatively poor knockdown efficiency and proteotoxicity. To address these limitations, we screened eleven diverse Cas9 orthologues and identified four that are broadly functional for targeted gene knockdown in mycobacteria. The most efficacious of these proteins, the CRISPR1 Cas9 from Streptococcus thermophilus (dCas9Sth1), typically achieves 20- to 100-fold knockdown of endogenous gene expression with minimal proteotoxicity. In contrast to other CRISPRi systems, dCas9Sth1-mediated gene knockdown is robust when targeted far from the transcriptional start site, thereby allowing high-resolution dissection of gene function in the context of bacterial operons. We demonstrate the utility of this system by addressing persistent controversies regarding drug synergies in the mycobacterial folate biosynthesis pathway. We anticipate that the dCas9Sth1 CRISPRi system will have broad utility for functional genomics, genetic interaction mapping and drug-target profiling in M. tuberculosis. Screening Cas9 orthologues to improve CRISPR interference in mycobacteria identified four that are broadly functional for targeted gene knockdown, one of which (dCas9Sth1) achieves a 20–100-fold knockdown of endogenous gene expression with minimal proteotoxicity.
0
Citation425
0
Save
0

A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis

Omar Vandal et al.Jul 20, 2008
Acidification of the phagosome is a key mechanism thought to be used by macrophages against Mycobacterium tuberculosis. The authors identify a previously undescribed gene that confers acid resistance to the bacterium and is essential for virulence ( pages 809–810 ). Acidification of the phagosome is considered to be a major mechanism used by macrophages against bacteria, including Mycobacterium tuberculosis (Mtb). Mtb blocks phagosome acidification1, but interferon-γ (IFN-γ) restores acidification and confers antimycobacterial activity2,3. Nonetheless, it remains unclear whether acid kills Mtb, whether the intrabacterial pH of any pathogen falls when it is in the phagosome and whether acid resistance is required for mycobacterial virulence. In vitro at pH 4.5, Mtb survived in a simple buffer and maintained intrabacterial pH. Therefore, Mtb resists phagolysosomal concentrations of acid. Mtb also maintained its intrabacterial pH and survived when phagocytosed by IFN-γ–activated macrophages. We used transposon mutagenesis to identify genes responsible for Mtb's acid resistance. A strain disrupted in Rv3671c, a previously uncharacterized gene encoding a membrane-associated protein, was sensitive to acid and failed to maintain intrabacterial pH in acid in vitro and in activated macrophages. Growth of the mutant was also severely attenuated in mice. Thus, Mtb is able to resist acid, owing in large part to Rv3671c, and this resistance is essential for virulence. Disruption of Mtb's acid resistance and intrabacterial pH maintenance systems is an attractive target for chemotherapy.
0
Citation330
0
Save
0

Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection

Joeli Marrero et al.May 3, 2010
Metabolic adaptation to the host niche is a defining feature of the pathogenicity of Mycobacterium tuberculosis (Mtb) . In vitro, Mtb is able to grow on a variety of carbon sources, but mounting evidence has implicated fatty acids as the major source of carbon and energy for Mtb during infection. When bacterial metabolism is primarily fueled by fatty acids, biosynthesis of sugars from intermediates of the tricarboxylic acid cycle is essential for growth. The role of gluconeogenesis in the pathogenesis of Mtb however remains unaddressed. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the first committed step of gluconeogenesis. We applied genetic analyses and 13 C carbon tracing to confirm that PEPCK is essential for growth of Mtb on fatty acids and catalyzes carbon flow from tricarboxylic acid cycle–derived metabolites to gluconeogenic intermediates. We further show that PEPCK is required for growth of Mtb in isolated bone marrow–derived murine macrophages and in mice. Importantly, Mtb lacking PEPCK not only failed to replicate in mouse lungs but also failed to survive, and PEPCK depletion during the chronic phase of infection resulted in mycobacterial clearance. Mtb thus relies on gluconeogenesis throughout the infection. PEPCK depletion also attenuated Mtb in IFNγ-deficient mice, suggesting that this enzyme represents an attractive target for chemotherapy.
66

The Mycobacterium tuberculosis transposon sequencing database (MtbTnDB): a large-scale guide to genetic conditional essentiality

Adrián Jinich et al.Mar 6, 2021
Abstract Characterizing genetic essentiality across various conditions is fundamental for understanding gene function. Transposon sequencing (TnSeq) is a powerful technique to generate genome-wide essentiality profiles in bacteria and has been extensively applied to Mycobacterium tuberculosis (Mtb). Dozens of TnSeq screens have yielded valuable insights into the biology of Mtb in vitro, inside macrophages, and in model host organisms. Despite their value, these Mtb TnSeq profiles have not been standardized or collated into a single, easily searchable database. This results in significant challenges when attempting to query and compare these resources, limiting our ability to obtain a comprehensive and consistent understanding of genetic conditional essentiality in Mtb. We address this problem by building a central repository of publicly available Mtb TnSeq screens, the Mtb transposon sequencing database (MtbTnDB). The MtbTnDB is a living resource that encompasses to date ≈150 standardized TnSeq screens, enabling open access to data, visualizations, and functional predictions through an interactive web app ( www.mtbtndb.app ). We conduct several statistical analyses on the complete database, such as demonstrating that (i) genes in the same genomic neighborhood have similar TnSeq profiles, and (ii) clusters of genes with similar TnSeq profiles are enriched for genes from similar functional categories. We further analyze the performance of machine learning models trained on TnSeq profiles to predict functional annotation of orphan genes in Mtb. By facilitating the comparison of TnSeq screens across conditions, the MtbTnDB will accelerate the exploration of conditional genetic essentiality, provide insights into the functional organization of Mtb genes, and help predict gene function in this important human pathogen.
66
Citation10
0
Save
Load More