BF
B.C. Forget
Author with expertise in Optogenetics in Neuroscience and Biophysics Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
16
h-index:
19
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

WiChR, a highly potassium selective channelrhodopsin for low-light two-photon neuronal inhibition

Johannes Vierock et al.Jul 3, 2022
+8
C
E
J
Abstract The electric excitability of muscle, heart and brain tissue relies on the precise interplay of Na + - and K + -selective ion channels. The involved ion fluxes are controlled in optogenetic studies using light-gated channelrhodopsins (ChRs). While non-selective cation-conducting ChRs are well-established for excitation, K + -selective ChRs (KCRs) for efficient inhibition have only recently come into reach. Here, we report the molecular analysis of recently discovered KCRs from the stramenopile Hyphochytrium catenoides and identify a novel type of hydrophobic K + -selectivity filter. Next, we demonstrate that the KCR signature motif is conserved in related stramenopile ChRs. Among them, WiChR from Wobblia lunata features an unmatched 80-fold preference for K + over Na + , stable photocurrents under continuous illumination and a prolonged open state lifetime. Well expressed in neurons, WiChR allows two-photon inhibition at low irradiance and reduced tissue heating,_recommending WiChR as the long-awaited efficient and versatile optogenetic inhibitor.
1
Citation10
0
Save
22

Ultrafast Light Targeting for High-Throughput Precise Control of Neuronal Networks

Giulia Faini et al.Jun 14, 2021
+4
C
E
G
ABSTRACT Understanding how specific sets of neurons fire and wire together during cognitive-relevant activity is one of the most pressing questions in neuroscience. Two-photon, single-cell resolution optogenetics based on holographic light-targeting approaches enables accurate spatio-temporal control of individual or multiple neurons. Yet, currently, the ability to drive asynchronous activity in distinct cells is critically limited to a few milliseconds and the achievable number of targets to several dozens. In order to expand the capability of single-cell optogenetics, we introduce an approach capable of ultra-fast sequential light targeting (FLiT), based on switching temporally focused beams between holograms at kHz rates. We demonstrate serial-parallel photostimulation strategies capable of multi-cell sub-millisecond temporal control and many-fold expansion of the number of activated cells. This approach will be important for experiments that require rapid and precise cell stimulation with defined spatio-temporal activity patterns and optical control of large neuronal ensembles.
0

Scanless two-photon voltage imaging

Ruth Sims et al.Jun 14, 2024
+8
C
I
R
Abstract Two-photon voltage imaging has long been heralded as a transformative approach capable of answering many long-standing questions in modern neuroscience. However, exploiting its full potential requires the development of novel imaging approaches well suited to the photophysical properties of genetically encoded voltage indicators. We demonstrate that parallel excitation approaches developed for scanless two-photon photostimulation enable high-SNR two-photon voltage imaging. We use whole-cell patch-clamp electrophysiology to perform a thorough characterization of scanless two-photon voltage imaging using three parallel illumination approaches and lasers with different repetition rates and wavelengths. We demonstrate voltage recordings of high-frequency spike trains and sub-threshold depolarizations from neurons expressing the soma-targeted genetically encoded voltage indicator JEDI-2P-Kv. Using a low repetition-rate laser, we perform multi-cell recordings from up to fifteen targets simultaneously. We co-express JEDI-2P-Kv and the channelrhodopsin ChroME-ST and capitalize on their overlapping two-photon absorption spectra to simultaneously evoke and image action potentials using a single laser source. We also demonstrate in vivo scanless two-photon imaging of multiple cells simultaneously up to 250 µm deep in the barrel cortex of head-fixed, anaesthetised mice.