IS
Ian Sitarik
Author with expertise in Macromolecular Crystallography Techniques
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
15
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

A Newly Identified Class of Protein Misfolding in All-atom Folding Simulations Consistent with Limited Proteolysis Mass Spectrometry

Quyen Vu et al.Jul 20, 2022
+5
Y
I
Q
Abstract Several mechanisms intrinsic to a protein’s primary structure are known to cause monomeric protein misfolding. Coarse-grained simulations, in which multiple atoms are represented by a single interaction site, have predicted a novel mechanism of misfolding exists involving off-pathway, non-covalent lasso entanglements, which are distinct from protein knots and slip knots. These misfolded states can be long-lived kinetic traps, and in some cases are structurally similar to the native state according to those simulations. Here, we examine whether such misfolded states occur in long-time-scale, physics-based all-atom simulations of protein folding. We find they do indeed form, estimate they can persist for weeks, and some have characteristics similar to the native state. Digestion patterns from Limited Proteolysis Mass Spectrometry are consistent with the presence of changes in entanglement in these proteins. These results indicate monomeric proteins can exhibit subpopulations of misfolded, self-entangled states that can explain long-timescale changes in protein structure and function in vivo . One-Sentence Summary Entangled misfolded states form in physics-based all-atom simulations of protein folding and have characteristics similar to the native state.
1
Citation6
0
Save
1

Universal protein misfolding intermediates can bypass the proteostasis network and remain soluble and less functional

Daniel Nissley et al.Aug 18, 2021
+6
F
Y
D
ABSTRACT Misfolded protein conformations with decreased functionality can bypass the proteostasis machinery and remain soluble in vivo . This is an unexpected phenomenon as several cellular quality control mechanisms have evolved to rid cells of misfolded proteins. Three questions, then, are: how is it structurally possible for long-lived, soluble, misfolded proteins to bypass the proteostasis machinery and processes? How widespread are these soluble, misfolded states across the proteome? And how long do they persist for? Here, we address these questions using coarse-grain molecular dynamics simulations of the synthesis, termination, and post-translational dynamics of a representative set of cytosolic E. coli proteins. We predict that half of all proteins exhibit subpopulations of misfolded conformations that are likely to bypass molecular chaperones, avoid aggregation, and not be rapidly degraded. These misfolded states may persist for months or longer for some proteins. Structurally characterizing these misfolded states, we observe they have a large amount of native structure, but also contain localized misfolded regions from non-native changes in entanglement, in which a protein segment threads through a loop formed by another portion of the protein that is not found in the native state. The surface properties of these misfolded states are native like, suggesting they may bypass the proteostasis machinery and its regulatory processes to remain soluble, while their entanglements make these states long-lived kinetic traps, as disentanglement requires unfolding of already folded portions of the protein. In terms of function, we predict that one-third of proteins have subpopulations that misfold into less-functional states that have structurally perturbed functional sites yet remain soluble. Data from limited-proteolysis mass spectrometry experiments, which interrogate the misfolded conformations populated by proteins upon unfolding and refolding, are consistent with the structural changes seen in the entangled states of glycerol-3-phosphate dehydrogenase upon misfolding. These results provide an explanation for how proteins can misfold into soluble conformations with reduced functionality that can bypass cellular quality controls, and indicate, unexpectedly, this may be a wide-spread phenomenon in proteomes. Such entanglements are observed in many native structures, suggesting the non-native entanglements we observe are plausible. More broadly, these near-native entangled structures suggest a hypothesis for how synonymous mutations can modulate downstream protein structure and function, with these mutations partitioning nascent proteins between these kinetically trapped states.
1
Citation5
0
Save
12

Subpopulations of soluble, misfolded proteins commonly bypass chaperones: How it happens at the molecular level

Ritaban Halder et al.Aug 18, 2021
E
I
D
R
ABSTRACT Subpopulations of soluble, misfolded proteins can bypass chaperones within cells. The scope of this phenomenon and the lifetimes of these states have not been experimentally quantified, and how such misfolding happens at the molecular level is poorly understood. We address the first issue through a meta-analysis of the experimental literature. We find that in all quantitative protein refolding-function studies, there is always a subpopulation of soluble but misfolded and less-functional protein that does not fold in the presence of one or more chaperones. This subpopulation ranges from 8% to 50% of the soluble protein molecules in solution. Fitting the experimental time traces to a kinetic model, we find these chaperone-bypassing misfolded states take months or longer to fold and function in the presence of different chaperones. We next addressed how, at the molecular level, some misfolded proteins can evade chaperones by simulating six different proteins interacting with E. coli ’s GroEL and HtpG chaperones when those proteins are in folded, unfolded, or long-lived, soluble, misfolded states. We observe that both chaperones strongly bind the unfolded state and weakly bind the folded and misfolded states to a similar degree. Thus, these chaperones cannot distinguish between the folded and long-lived misfolded states of these proteins. A structural analysis reveals the misfolded states are highly similar to the native state – having a similar size, amount of exposed hydrophobic surface area, and level of tertiary structure formation. These results demonstrate that in vitro it is common for appreciable subpopulations of proteins to remain misfolded, soluble, and evade the refolding action of chaperones for very long times. Further, these results suggest that this happens because these misfolded subpopulations are near-native and therefore interact with chaperones to a similar extent as properly folded proteins. More broadly, these results indicate a mechanism in which long-time scale changes in protein structure and function can persist in cells because some protein’s non-native states can bypass components of the proteostasis machinery. TEASER Near-native, misfolded protein conformations explain why some soluble proteins fail to refold in the presence of chaperones.
12
Citation4
0
Save
1

Synonymous mutations can alter protein dimerization through localized interface misfolding involving self-entanglements

Lan Dang et al.Oct 26, 2021
+5
I
P
L
ABSTRACT Synonymous mutations in messenger RNAs (mRNAs) can reduce protein-protein binding affinities by more than half despite leaving the protein’s amino acid sequence unaltered. Here, we use coarse-grain simulations of protein synthesis, ejection from the ribosome, post-translational dynamics, and dimerization to understand how synonymous mutations can influence the dimerization of the two E. coli homodimers oligoribonuclease and ribonuclease T. We synthesize each protein from its wildtype, fastest- and slowest-translating synonymous mRNAs and calculate the ensemble-average interaction energy between the resulting dimers. We find, similar to experiments with other dimers, that oligoribonuclease’s dimerization is altered by synonymous mutations. Relative to wildtype, the dimer interaction energy becomes 4% and 10% stronger, respectively, when translated from its fastest- and slowest-translating mRNAs. Ribonuclease T dimerization, however, is insensitive to synonymous mutations. The structural and kinetic origin of these changes are misfolded states containing non-covalent lasso-entanglements, many of which structurally perturb the dimer interface, whose probability of occurrence depends on translation speed. Translation of the fast- and slow-translating mRNAs of oligoribonuclease decreases the population of these misfolded states relative to wildtype. For ribonuclease T, however, these misfolded populations are insensitive to synonymous mutations. Entanglements cause altered dimerization energies for oligoribonuclease as there is a significant association (odds ratio: 50) between non-native self-entanglements and weak-binding dimer conformations. These conclusions are independent of model resolution, as entangled structures persist in long-time-scale all-atom simulations. Thus, non-native changes in entanglement is a mechanism through which oligomer structure and function can be altered. SIGNIFICANCE STATEMENT Synonymous mutations affect a range of post-translational protein functions, including dimerization, without altering the amino acid sequence of the encoded protein. This suggests that proteins somehow retain a “memory” of their translation-elongation kinetics long after synthesis is complete. Here, we demonstrate that synonymous mutations can change the likelihood that nascent proteins misfold into self-entangled conformations. These self-entangled structures are similar to the native state but with key conformational perturbations that disrupt the dimer interface, reducing their ability to dimerize. Rearrangement of such self-entangled states to the native state is a slow process, offering a structural explanation for how translation-elongation kinetics can influence long-time-scale protein-protein binding affinities.