HM
Heather Mortiboys
Author with expertise in Role of Autophagy in Disease and Health
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(80% Open Access)
Cited by:
357
h-index:
27
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mitochondrial function and morphology are impaired in parkin‐mutant fibroblasts

Heather Mortiboys et al.Nov 1, 2008
+8
W
K
H
There are marked mitochondrial abnormalities in parkin-knock-out Drosophila and other model systems. The aim of our study was to determine mitochondrial function and morphology in parkin-mutant patients. We also investigated whether pharmacological rescue of impaired mitochondrial function may be possible in parkin-mutant human tissue.
0
Citation333
0
Save
6

FBXL4 deficiency promotes mitophagy by elevating NIX

Hannah Elcocks et al.Oct 11, 2022
+5
K
A
H
Abstract The selective autophagy of mitochondria is linked to mitochondrial quality control and is critical to a healthy organism. We have conducted a CRISPR/Cas9 screen of human E3 ubiquitin ligases for influence on mitophagy under both basal cell culture conditions and following acute mitochondrial depolarisation. We identify two Cullin RING ligases, VHL and FBXL4 as the most profound negative regulators of basal mitophagy. We show that these converge through control of the mitophagy adaptors BNIP3 and BNIP3L/NIX through different mechanisms. FBXL4 suppression of BNIP3 and NIX levels is mediated via direct interaction and protein destabilisation rather than suppression of HIF1α-mediated transcription. Depletion of NIX but not BNIP3 is sufficient to restore mitophagy levels. Our study enables a full understanding of the aetiology of early onset mitochondrial encephalomyopathy that is supported by analysis of a disease associated mutation. We further show that the compound MLN4924, which globally interferes with Cullin RING ligase activity, is a strong inducer of mitophagy providing a research tool in this context and a candidate therapeutic agent for conditions linked to mitochondrial dysfunction.
6
Citation7
0
Save
10

Benchmarking a highly selective USP30 inhibitor for enhancement of mitophagy and pexophagy

Emma Rusilowicz‐Jones et al.Apr 28, 2021
+4
F
F
E
Abstract The deubiquitylase USP30 is an actionable target considered for treatment of conditions associated with defects in the PINK1/Parkin pathway leading to mitophagy. These include Parkinson’s disease and pulmonary fibrosis. We provide a detailed cell biological characterisation of a benzenesulphonamide molecule, compound 39, that has previously been reported to inhibit USP30 in an in vitro enzymatic assay. The current compound offers increased selectivity over previously described inhibitors. It enhances mitophagy and generates a signature response for USP30 inhibition following mitochondrial depolarisation. This includes enhancement of TOM20 and SYNJ2BP ubiquitylation and phosphoubiquitin accumulation, alongside increased mitophagy. In dopaminergic neurons, generated from Parkinson’s disease patients carrying loss of function Parkin mutations, compound 39 could significantly restore mitophagy to a level approaching control values. USP30 is located on both mitochondria and peroxisomes and has also been linked to the PINK1 independent pexophagy pathway. Using a fluorescence reporter of pexophagy expressed in U20S cells, we observe increased pexophagy upon application of compound 39 that recapitulates the previously described effect for USP30 depletion. This provides the first pharmacological intervention with a synthetic molecule to enhance peroxisome turnover.
10
Citation6
0
Save
0

A novel USP30 inhibitor recapitulates genetic loss of USP30 and sets the trigger for PINK1-PARKIN amplification of mitochondrial ubiquitylation

Emma Rusilowicz‐Jones et al.Apr 20, 2020
+26
A
M
E
Abstract The mitochondrial deubiquitylase USP30 negatively regulates the selective autophagy of damaged mitochondria. It has been proposed as an actionable target to alleviate the loss of function of the mitophagy pathway governed by the Parkinson’s Disease associated genes PINK1 and PRKN. We present the characterisation of a N-cyano pyrrolidine derived compound, FT3967385, with high selectivity for USP30. The compound is well tolerated with no loss of total mitochondrial mass. We demonstrate that ubiquitylation of TOM20, a component of the outer mitochondrial membrane import machinery that directly interacts with USP30, represents a robust biomarker for both USP30 loss and inhibition. We have conducted proteomics analyses on a SHSY5Y neuroblastoma cell line model to directly compare the effects of genetic loss of USP30 with selective inhibition in an unbiased fashion. We have thereby identified a subset of ubiquitylation events consequent to mitochondrial depolarisation that are USP30 sensitive. Within responsive elements of the ubiquitylome, several components of the outer mitochondrial membrane transport (TOM) complex are most prominent. Thus, our data support a model whereby USP30 can regulate the availability of ubiquitin at the specific site of mitochondrial PINK1 accumulation following membrane depolarisation. In this model, USP30 deubiquitylation of TOM complex components dampens the trigger for the Parkin-dependent amplification of mitochondrial ubiquitylation leading to mitophagy. Accordingly, PINK1 generation of phospho-Ser65 Ubiquitin proceeds more rapidly and to a greater extent in cells either lacking USP30 or subject to USP30 inhibition.
0
Citation5
0
Save
17

Oxidative switch drives mitophagy defects in dopaminergicparkinmutant patient neurons

Aurélie Schwartzentruber et al.May 30, 2020
+6
F
C
A
Abstract Background Mutations in parkin are the most common cause of early onset Parkinson’s disease. Parkin is an E3 ubiquitin ligase, functioning in mitophagy. Mitochondrial abnormalities are present in parkin mutant models. Patient derived neurons are a promising model in which to study pathogenic mechanisms and therapeutic targets. Here we generate induced neuronal progenitor cells from parkin mutant patient fibroblasts with a high dopaminergic neuron yield. We reveal changing mitochondrial phenotypes as neurons undergo a metabolic switch during differentiation. Methods Fibroblasts from 4 controls and 4 parkin mutant patients were transformed into induced neuronal progenitor cells and subsequently differentiated into dopaminergic neurons. Mitochondrial morphology, function and mitophagy were evaluated using live cell fluorescent imaging, cellular ATP and reactive oxygen species production quantification. Results Direct conversion of control and parkin mutant patient fibroblasts results in induced neuronal progenitor and their differentiation yields high percentage of dopaminergic neurons. We were able to observe changing mitochondrial phenotypes as neurons undergo a metabolic switch during differentiation. Our results show that when pre-neurons are glycolytic early in differentiation mitophagy is unimpaired by PRKN deficiency. However as neurons become oxidative phosphorylation dependent, mitophagy is severely impaired in the PRKN mutant patient neurons. These changes correlate with changes in mitochondrial function and morphology; resulting in lower neuron yield and altered neuronal morphology. Conclusions Induced neuronal progenitor cell conversion can produce a high yield of dopaminergic neurons. The mitochondrial phenotype, including mitophagy status, is highly dependent on the metabolic status of the cell. Only when neurons are oxidative phosphorylation reliant the extent of mitochondrial abnormalities are identified. These data provide insight into cell specific effects of PRKN mutations, in particular in relation to mitophagy dependent disease phenotypes and provide avenues for alternative therapeutic approaches.
17
Citation2
0
Save
4

A p21-GFP zebrafish model of senescence for rapid testing of senolyticsin vivo

Samir Morsli et al.Sep 19, 2022
+5
C
S
S
Abstract Senescence drives the onset and severity of multiple ageing-associated diseases as well as frailty. As a result, there has been an increased interest in mechanistic studies and in the search for compounds targeting senescent cells, known as senolytics. Mammalian models are commonly used to test senolytics and generate functional and toxicity data at the level of organs and systems, yet this is expensive and time consuming. Zebrafish share high homology in genes associated with human ageing and disease. They can be genetically-modified relatively easily. In larvae, most organs develop within 5 days of fertilisation and are transparent, which allows tracking of fluorescent cells in vivo in real time, testing drug off-target toxicity and assessment of cellular and phenotypic changes. Here, we have generated a transgenic zebrafish line that expresses green fluorescent protein (GFP) under the promoter of a key senescence marker, p21. We show an increase in p21:GFP + cells in larvae following exposure to ionising radiation and with natural ageing. p21:GFP + cells display other markers of senescence, including senescence-associated β-galactosidase and IL6. The observed increase in senescent cells following irradiation is associated with a reduction in the thickness of muscle fibres and mobility, two important ageing phenotypes. We also show that quercetin and dasatinib, two senolytics currently in clinical trials, reduce the number of p21:GFP + cells, in a rapid 5-day assay. This model provides an important tool to study senescence in a living organism, allowing the rapid selection of senolytics before moving to more expensive and time-consuming mammalian systems.
4
Citation1
0
Save
0

Unexpected opposing biological effect of genetic risk factors for Parkinson’s disease

Marcus Keatinge et al.Jul 14, 2019
+10
H
N
M
Abstract The additive effect of genetic risk variants on overall disease risk is a plausible but frequently unproven hypothesis. To test this hypothesis, we assessed the biological effect of combined glucocerebrosidase (GCase) and acid sphingomyelinase (ASM) deficiency. Variants in both glucocerebrosidase1 ( GBA1 ) and sphingomyelinase ( SMPD1 ) are genetic risk factors for Parkinson’s disease. Unexpectedly, ASM deficiency resulted in normalized behaviour and prolonged survival in gba1 −/− ; smpd1 −/− double-mutant zebrafish compared to gba1 −/− . RNAseq-based pathway analysis confirmed a profound rescue of neuronal function and intracellular homeostasis. We identified complete reciprocal rescue of mitochondrial respiratory chain function and abolished lipid membrane oxidation in gba1 −/− ; smpd1 −/− compared to gba1 −/− or smpd1 −/− as the underlying rescue mechanism. Complementing in vitro experiments demonstrated an unexpected reduction of α-synuclein levels in human cell lines with combined GCase and ASM deficiency. Our study highlights the importance of functional validation for any putative interactions between genetic risk factors and their overall effect on disease-relevant mechanisms rather than readily assuming an additive effect. Summary The additive effect of genetic risk variants on disease risk is a popular but typically unproven hypothesis. We investigated this hypothesis mechanistically for Parkinson’s disease risk factors and provide evidence of an unexpected rescue effect on neuronal function and survival.
0
Citation1
0
Save
0

Activation of the Keap1/Nrf2 pathway suppresses mitochondrial dysfunction, oxidative stress, and motor phenotypes inC9orf72ALS/FTD models

Wing Au et al.Jun 21, 2024
+9
A
L
W
Mitochondrial dysfunction is a common feature of C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several Drosophila models of C9orf72 -ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue C9orf72 locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of Keap1 or pharmacological inhibition by dimethyl fumarate significantly rescued the C9orf72 -related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in C9orf72 patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to C9orf72 pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for C9orf72 -related ALS/FTD.
0
Citation1
0
Save
1

The master energy homeostasis regulator PGC-1α couples transcriptional co-activation and mRNA nuclear export

Simeon Mihaylov et al.Sep 19, 2021
+10
Y
L
S
Abstract PGC-1α plays a central role in maintaining the mitochondrial and energy metabolism homeostasis, linking external stimuli to the transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and a putative RNA recognition motif, however potential RNA-processing role(s) have remained elusive for the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export factor NXF1. Inducible depletion of endogenous PGC-1α and expression of RNAi-resistant RS-deleted PGC-1α further demonstrate that the RNA-binding activity is required for nuclear export of co-activated transcripts and mitochondrial homeostasis. Moreover, a quantitative proteomics approach confirmed PGC-1α-dependent RNA transport and mitochondrial-related functions, identifying also novel mRNA nuclear export targets in age-related telomere maintenance. Discovering a novel function for a major cellular homeostasis regulator provides new directions to further elucidate the roles of PGC-1α in gene expression, metabolic disorders, ageing and neurodegenerative diseases.
1
Citation1
0
Save
1

Deficits in mitochondrial function and glucose metabolism seen in sporadic and familial Alzheimer’s disease derived Astrocytes are ameliorated by increasing hexokinase 1 expression

Simon Bell et al.Mar 25, 2023
+10
P
S
S
Abstract Background Astrocytes have multiple roles including providing neurons with metabolic substrates and maintaining neurotransmitter synaptic homeostasis. Astrocyte glucose metabolism plays a key role in learning and memory with astrocytic glycogen a key substrate supporting memory encoding. The neuronal support provided by astrocytes has a high metabolic demand. Deficits in astrocytic mitochondrial metabolic functioning and glycolysis could impair neuronal function. Changes to cellular metabolism are seen early in Alzheimer’s disease (AD). Understanding cellular metabolism changes in AD astrocytes could be exploited as a new biomarker or synergistic therapeutic agent when combined with anti-amyloid treatments in AD. Methods In this project, we characterised mitochondrial and glycolytic function in astrocytes derived from patients with sporadic (n=6) and familial (PSEN1, n=3) forms of AD. Astrocytes were derived using direct reprogramming methods. Astrocyte metabolic outputs: ATP, and extracellular lactate levels were measured using luminescent and fluorescent protocols. Mitochondrial respiration and glycolytic function were measured using a Seahorse XF Analyzer. Hexokinase deficits identified where corrected by transfecting astrocytes with an adenovirus viral vector containing the hexokinase 1 gene. Results There was a reduction of total cellular ATP of 20% (p=0.05 in sAD astrocytes) and of 48% (p<0.01) in fAD. A 44% reduction (p<0.05), and 80% reduction in mitochondrial spare capacity was seen in sAD and fAD astrocytes respectively. Reactive oxygen species (ROS) were increased in both AD astrocyte types (p=0.05). Mitochondrial complex I and II was significantly increased in sAD (p<0.05) but not in fAD. Astrocyte glycolytic reserve and extracellular lactate was significantly reduced when compared to controls in both sAD and fAD (p<0.05). We identified a deficit in the glycolytic pathway enzyme hexokinase, and correcting this deficit restored most of the metabolic phenotype in sAD but not fAD astrocytes. Conclusion AD astrocytes have abnormalities in functional capacity of mitochondria and the process of glycolysis. These functional deficits can be improved by correcting hexokinase expression deficits with adenoviral vectors. This suggests that hexokinase 1 deficiency could potentially be exploited as a new therapeutic target for AD.
Load More